Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancer Cell Int ; 23(1): 333, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115111

ABSTRACT

DPY30 belongs to the core subunit of components of the histone lysine methyltransferase complex, which is implicated in tumorigenesis, cell senescence, and other biological events. However, its contribution to colorectal carcinoma (CRC) progression and metastasis has yet to be elucidated. Therefore, this study aimed to investigate the biological function of DPY30 in CRC metastasis both in vitro and in vivo. Herein, our results revealed that DPY30 overexpression is significantly positively correlated with positive lymph nodes, epithelial-mesenchymal transition (EMT), and CRC metastasis. Moreover, DPY30 knockdown in HT29 and SW480 cells markedly decreased EMT progression, as well as the migratory and invasive abilities of CRC cells in vitro and lung tumor metastasis in vivo. Mechanistically, DPY30 increased histone H3K4me3 level and promoted EMT and CRC metastasis by upregulating the transcriptional expression of ZEB1. Taken together, our findings indicate that DPY30 may serve as a therapeutic target and prognostic marker for CRC.

2.
Int J Med Sci ; 20(7): 901-917, 2023.
Article in English | MEDLINE | ID: mdl-37324189

ABSTRACT

DPY30, a core subunit of the SET1/MLL histone H3K4 methyltransferase complexes, plays an important role in diverse biological functions through the epigenetic regulation of gene transcription, especially in cancer development. However, its involvement in human colorectal carcinoma (CRC) has not been elucidated yet. Here we demonstrated that DPY30 was overexpressed in CRC tissues, and significantly associated with pathological grading, tumor size, TNM stage, and tumor location. Furthermore, DPY30 knockdown remarkably suppressed the CRC cell proliferation through downregulation of PCNA and Ki67 in vitro and in vivo, simultaneously induced cell cycle arrest at S phase by downregulating Cyclin A2. In the mechanistic study, RNA-Seq analysis revealed that enriched gene ontology of cell proliferation and cell growth was significantly affected. And ChIP result indicated that DPY30 knockdown inhibited H3 lysine 4 trimethylation (H3K4me3) and attenuated interactions between H3K4me3 with PCNA, Ki67 and cyclin A2 respectively, which led to the decrease of H3K4me3 establishment on their promoter regions. Taken together, our results demonstrate overexpression of DPY30 promotes CRC cell proliferation and cell cycle progression by facilitating the transcription of PCNA, Ki67 and cyclin A2 via mediating H3K4me3. It suggests that DPY30 may serve as a potential therapeutic molecular target for CRC.


Subject(s)
Colorectal Neoplasms , Cyclin A2 , Humans , Cyclin A2/genetics , Transcription Factors , Epigenesis, Genetic , Ki-67 Antigen , Proliferating Cell Nuclear Antigen , Cell Proliferation/genetics , Cell Cycle/genetics , Colorectal Neoplasms/genetics
3.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500247

ABSTRACT

Proteomic profiling of extracellular vesicles (EVs) represents a promising approach for early detection and therapeutic monitoring of diseases such as cancer. The focus of this study was to apply robust EV isolation and subsequent data-independent acquisition mass spectrometry (DIA-MS) for urinary EV proteomics of prostate cancer and prostate inflammation patients. Urinary EVs were isolated by functionalized magnetic beads through chemical affinity on an automatic station, and EV proteins were analyzed by integrating three library-base analyses (Direct-DIA, GPF-DIA, and Fractionated DDA-base DIA) to improve the coverage and quantitation. We assessed the levels of urinary EV-associated proteins based on 40 samples consisting of 20 cases and 20 controls, where 18 EV proteins were identified to be differentiated in prostate cancer outcome, of which three (i.e., SERPINA3, LRG1, and SCGB3A1) were shown to be consistently upregulated. We also observed 6 out of the 18 (33%) EV proteins that had been developed as drug targets, while some of them showed protein-protein interactions. Moreover, the potential mechanistic pathways of 18 significantly different EV proteins were enriched in metabolic, immune, and inflammatory activities. These results showed consistency in an independent cohort with 20 participants. Using a random forest algorithm for classification assessment, including the identified EV proteins, we found that SERPINA3, LRG1, or SCGB3A1 add predictable value in addition to age, prostate size, body mass index (BMI), and prostate-specific antigen (PSA). In summary, the current study demonstrates a translational workflow to identify EV proteins as molecular markers to improve the clinical diagnosis of prostate cancer.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms , Male , Humans , Prostate , Proteomics/methods , Mass Spectrometry/methods , Extracellular Vesicles/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism
4.
J Biomol Struct Dyn ; 38(7): 2021-2028, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31315525

ABSTRACT

Obesity is prone to cause a variety of chronic metabolic diseases, and it has aroused people's attention that the rapid increase in the global population of obese people in the past years. As a kind of weight-loss drug acting in the intestine, lipase inhibitor does not enter the bloodstream without producing central nervous side effects. Because they do not affect the metabolism system, lipase inhibitors and obesity have become one of the hot spots in recent years. Glycolic acid is a new substrate analog inhibitor with the value of the semi-inhibitory concentration of lipase is estimated to be 17.29 ± 0.14 mM. Using the plots of Lineweaver-Burk, the inhibition mechanism of lipase by glycolic acid was reversible and the inhibition type belongs to competitive inhibition with a KI value of 19.61 ± 0.26 mM. The inhibitory kinetics assay showed that the microscopic velocity constant k+0 of inhibition kinetics is 1.79 × 10-3 mM-1s-1, and k-0 is 0.73 × 10-3 s-1. The results of UV full-wavelength scanning on product cumulative, fluorescence quenching and molecular simulation also indicated that glycolic acid and substrate competitive with lipase by binding to Lys137. Thereby glycolic acid inhibiting the oxidation-catalyzed reaction and reducing the product of the enzyme and substrate. This adds a new direction for the search for lipase inhibitors and provides new ideas about the development of anti-obesity drugs.Communicated by Ramaswamy H. Sarma.


Subject(s)
Glycolates , Lipase , Humans , Kinetics , Lipase/metabolism
5.
Appl Biochem Biotechnol ; 189(3): 855-870, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31131419

ABSTRACT

Condensed tannins (CTS) have been isolated and purified from leaves of Acanthus ilicifolius Linn. And their structures were investigated by three methods: 13C nuclear magnetic resonance (13C NMR), reversed-phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results showed that the CTS were a mixture of catechin/epicatechin, galatechin/epicatechin, and amphicin/epigalin, and that the polymer chain lengths were 3-mers to 14-mers. Antityrosinase activities and antioxidant activities of the CTS from A. ilicifolius leaves were further studied. The IC50 of the CTS on mushroom tyrosinase activity was determined to be 19.7 ± 0.13 µg/mL, and inhibition type analyses indicated that the CTS were mixed type inhibitors and their inhibition CTS was reversible. The CTS from A. ilicifolius leaves also exhibited potential antioxidant activity. The IC50 of DPPH and ABTS scavenging activities were 104 ± 0.894 µg/mL and 86 ± 0.616 µg/mL, respectively. And the FRAP value was 758.28 ± 2.42 mg AAE/g. In addition, we found that the CTS from A. ilicifolius leaves had an excellent effect on preserving the quality of fresh-cut apples by preventing apples from browning through reducing polyphenol oxidase activities in apples.


Subject(s)
Acanthaceae/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Malus/drug effects , Tannins/chemistry , Tannins/pharmacology , Agaricales/enzymology , Antioxidants/isolation & purification , Food Preservation , Kinetics , Malus/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Plant Leaves/chemistry , Polymerization , Tannins/isolation & purification
6.
Int J Biol Macromol ; 123: 723-731, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30414415

ABSTRACT

Novel kojic acid derivatives (KADs) with the potential ability to inhibit tyrosinase were synthesized and were further identified by Q-Exactive, IR and NMR. Among these compounds, KAD2 showed the best inhibitory effects on diphenolase activity and monophenolase activity, with IC50 of 7.50 µM and 20.51 µM, respectively. The anti-melanogenic activity of KAD2 was further confirmed by assessing the inhibition of melanin content and intracellular tyrosinase activity in B16F10 cells and zebrafish model. It demonstrated that KAD2 suppressed the expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase related protein-1 and 2 (TRP-1 and TRP-2) in a concentration-dependent manner. Furthermore, KAD2 dose-dependently suppressed the expression of the phosphorylation of protein kinase A (PKA) and cAMP-response element binding protein (CREB) and rescued the phosphorylation of Akt. Additionally, KAD2 could inhibit body pigmentation in zebrafish. Taken together, our findings elucidated that KAD2 has significant anti-melanogenic activity via CREB and Akt pathway-mediated suppression the expression of MITF and TYR family proteins in B16F10 cells. It could provide new insight into the development of novel anti-melanogenic agents to apply in the fields of food sciences, agriculture, cosmetics and medicine.


Subject(s)
Melanins/biosynthesis , Melanoma, Experimental/metabolism , Pyrones/pharmacology , Zebrafish/metabolism , Agaricales/enzymology , Animals , Cell Shape/drug effects , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Pigmentation/drug effects , Pyrones/chemical synthesis , Pyrones/chemistry
7.
J Agric Food Chem ; 65(28): 5620-5631, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28627168

ABSTRACT

Cardanol monoene (CM) is the major phenolic component extracted from cashew nut shell liquid (CNSL), which has been relevant to wide range of biological effects. In this study, we found that CM could inhibit the M14 human melanoma cells proliferation in a dose dependent and time dependent manner, and the IC50 values were determined to be 23.15 ± 2.42 µM and 12.30 ± 1.67 µM after 24 and 48 h treatment, respectively. The flow cytometric analysis demonstrated that CM induced M14 cell cycle arrest at the S phase, along with the collapse of mitochondrial membrane potential (ΔΨm) and the accumulation of reactive oxygen species (ROS) level in cells, but the apoptotic cells reduced when treated with Z-VAD-FMK (pan-caspase inhibitor). Western blotting showed that the expressions of p53, cytosol cytochrome C, cleaved-caspase-3, and cleaved-PARP were up-regulated, and the expression level of Bax/Bcl-2 ratio increased significantly. The 2527 significant differentially expressed genes were obtained by RNA-seq, which were assigned to 270 KEGG pathways. These results indicated that CM induced M14 cells apoptosis via the ROS triggered mitochondrial-associated pathways, which supports the potential application of CM for the therapy of melanoma cancer.


Subject(s)
Anacardium/chemistry , Apoptosis/drug effects , Melanoma/physiopathology , Mitochondria/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cytochromes c/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mitochondria/metabolism , Nuts/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL