Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
STAR Protoc ; 5(3): 103012, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907998

ABSTRACT

Molecular identification of pollen carried by insects informs about their history of visited plants. For migratory butterflies, it can be used to trace long-range movements enduring days of flight over thousands of kilometers. Here, we present a protocol to (1) isolate pollen grains from butterfly bodies and (2) prepare metabarcoding libraries for their identification using the internal transcribed spacer 2 fragment, a common barcode used to identify plants. This protocol would be applicable to other insect groups and metabarcoding markers. For complete details on the use and execution of this protocol, please refer to Suchan et al.1 and Gorki et al.2.

2.
Nat Commun ; 15(1): 5205, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918383

ABSTRACT

The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.


Subject(s)
Butterflies , Flight, Animal , Animals , Butterflies/physiology , Flight, Animal/physiology , Wind , Ecosystem , South America , Europe , Animal Migration/physiology , Pollen , Africa , Animal Distribution
3.
Curr Biol ; 34(12): 2684-2692.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38848713

ABSTRACT

Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.


Subject(s)
Animal Migration , Butterflies , DNA Barcoding, Taxonomic , Pollen , Animals , Butterflies/physiology , Europe/epidemiology , Middle East/epidemiology , Africa/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL