Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nature ; 560(7720): 666-670, 2018 08.
Article in English | MEDLINE | ID: mdl-30135577

ABSTRACT

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Subject(s)
Frizzled Receptors/chemistry , Binding Sites , Crystallography, X-Ray , Cysteine/metabolism , Dishevelled Proteins/metabolism , Frizzled Receptors/genetics , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Wnt Signaling Pathway
2.
Biochem J ; 478(23): 4137-4149, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34796899

ABSTRACT

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC-APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Šresolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA's high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate-binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.


Subject(s)
Ornithine Decarboxylase Inhibitors/metabolism , Ornithine Decarboxylase/metabolism , Propylamines/metabolism , Humans , Protein Binding , Protein Domains
3.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26200343

ABSTRACT

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Disulfides/chemistry , Disulfides/metabolism , Humans , Lasers , Mice , Models, Molecular , Multiprotein Complexes/biosynthesis , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Reproducibility of Results , Signal Transduction , X-Rays
4.
J Biol Chem ; 293(44): 16994-17007, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30206123

ABSTRACT

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the ß-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Subject(s)
AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Allosteric Regulation , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Benzoates/chemistry , Benzoates/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Humans , Ligands , Protein Conformation , Protein Domains
5.
Proc Natl Acad Sci U S A ; 111(2): 839-44, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24379397

ABSTRACT

Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.


Subject(s)
Models, Molecular , Nuclear Proteins/chemistry , Protein Conformation , Receptors, Cytoplasmic and Nuclear/chemistry , Repressor Proteins/chemistry , Bile Acids and Salts/metabolism , Binding Sites/genetics , Cell Cycle Proteins , Cell Line , Cholesterol/metabolism , Crystallization , Drug Design , Homeostasis/genetics , Homeostasis/physiology , Humans , Receptors, Cytoplasmic and Nuclear/metabolism
6.
Genes Dev ; 23(8): 986-96, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19390091

ABSTRACT

Small Heterodimer Partner (SHP) inhibits activities of numerous transcription factors involved in diverse biological pathways. As an important metabolic regulator, SHP plays a key role in maintaining cholesterol and bile acid homeostasis by inhibiting cholesterol conversion to bile acids. While SHP gene induction by increased bile acids is well established, whether SHP activity is also modulated remains unknown. Here, we report surprising findings that SHP is a rapidly degraded protein via the ubiquitin-proteasomal pathway and that bile acids or bile acid-induced intestinal fibroblast growth factor 19 (FGF19) increases stability of hepatic SHP by inhibiting proteasomal degradation in an extracellular signal-regulated kinase (ERK)-dependent manner. SHP was ubiquitinated at Lys122 and Lys123, and mutation of these sites altered its stability and repression activity. Tandem mass spectrometry revealed that upon bile acid treatment, SHP was phosphorylated at Ser26, within an ERK motif in SHP, and mutation of this site dramatically abolished SHP stability. Surprisingly, SHP stability was abnormally elevated in ob/ob mice and diet-induced obese mice. These results demonstrate an important role for regulation of SHP stability in bile acid signaling in normal conditions, and that abnormal stabilization of SHP may be associated with metabolic disorders, including obesity and diabetes.


Subject(s)
Bile Acids and Salts/physiology , Proteasome Endopeptidase Complex/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/physiology , Ubiquitination , Animals , Cell Line, Tumor , Chenodeoxycholic Acid/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factors/metabolism , Gastrointestinal Agents/pharmacology , Half-Life , Humans , Liver/drug effects , Liver/metabolism , Lysine/metabolism , Mice , Mutation , Phosphorylation , Protein Stability/drug effects , Ubiquitination/drug effects
7.
Nature ; 462(7273): 602-8, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19898420

ABSTRACT

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Models, Molecular , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , DNA Mutational Analysis , Plants, Genetically Modified , Protein Binding , Protein Structure, Tertiary
8.
Proc Natl Acad Sci U S A ; 109(40): 16137-42, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22988100

ABSTRACT

MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor ß-Klotho (ßKL); and mediates postprandial responses under physiological conditions, but hepatic responses to FGF19 signaling were shown to be impaired in patients with steatosis. Here, we show an unexpected functional link between aberrantly elevated miR-34a and impaired ßKL/FGF19 signaling in obesity. In vitro studies show that miR-34a down-regulates ßKL by binding to the 3' UTR of ßKL mRNA. Adenoviral-mediated overexpression of miR-34a in mice decreased hepatic ßKL levels, impaired FGF19-activated ERK and glycogen synthase kinase signaling, and altered expression of FGF19 metabolic target genes. Consistent with these results, ßKL levels were decreased and hepatic responses to FGF19 were severely impaired in dietary obese mice that have elevated miR-34a. Remarkably, in vivo antisense inhibition of miR-34a in obese mice partially restored ßKL levels and improved FGF19 target gene expression and metabolic outcomes, including decreased liver fat. Further, anti-miR-34a treatment in primary hepatocytes of obese mice restored FGF19-activated ERK and glycogen synthase kinase signaling in a ßKL-dependent manner. These results indicate that aberrantly elevated miR-34a in obesity attenuates hepatic FGF19 signaling by directly targeting ßKL. The miR-34a/ßKL/FGF19 axis may present unique therapeutic targets for FGF19-related human diseases, including metabolic disorders and cancer.


Subject(s)
Fibroblast Growth Factors/metabolism , Liver/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Obesity/metabolism , Postprandial Period/physiology , Signal Transduction/physiology , Animals , DNA Primers/genetics , Humans , Klotho Proteins , Luciferases , Male , Mice , Mice, Inbred BALB C , Obesity/physiopathology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
9.
J Biol Chem ; 288(32): 23252-63, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23824184

ABSTRACT

Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.


Subject(s)
Bile Acids and Salts/metabolism , Epigenesis, Genetic/physiology , Liver/metabolism , Protein Kinase C-epsilon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/physiology , Animals , Bile Acids and Salts/genetics , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Hep G2 Cells , Humans , Male , Methylation , Mice , Mice, Inbred BALB C , Mutation , Phosphorylation/physiology , Protein Kinase C-epsilon/genetics , Receptors, Cytoplasmic and Nuclear/genetics
10.
Proc Natl Acad Sci U S A ; 108(52): 21259-64, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22160701

ABSTRACT

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Models, Molecular , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Crystallization , Enzyme Activation , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Phosphatase 2C , X-Ray Diffraction
11.
Nat Med ; 12(11): 1253-5, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17072310

ABSTRACT

The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.


Subject(s)
Fibroblast Growth Factors/physiology , Gallbladder/physiology , Animals , Cholecystokinin/blood , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Female , Fibroblast Growth Factors/genetics , Gallbladder/metabolism , Mice , Mice, Knockout , Polymerase Chain Reaction , RNA, Messenger/genetics
12.
Plant Commun ; 4(6): 100639, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37322867

ABSTRACT

Jasmonates (JAs) are plant hormones with crucial roles in development and stress resilience. They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins. In the absence of JA, JAZ proteins bind and inhibit MYC through the assembly of MYC-JAZ-Novel Interactor of JAZ (NINJA)-TPL repressor complexes. However, JAZ and NINJA are predicted to be largely intrinsically unstructured, which has precluded their experimental structure determination. Through a combination of biochemical, mutational, and biophysical analyses and AlphaFold-derived ColabFold modeling, we characterized JAZ-JAZ and JAZ-NINJA interactions and generated models with detailed, high-confidence domain interfaces. We demonstrate that JAZ, NINJA, and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly. By contrast, most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation. Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem (ZIM) motif mediates JAZ-JAZ and JAZ-NINJA interactions through separate surfaces, and our data further suggest that NINJA modulates JAZ dimerization. This study advances our understanding of JA signaling by providing insights into the dynamics, interactions, and structure of the JAZ-NINJA core of the JA repressor complex.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Repressor Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Cyclopentanes/metabolism
13.
J Biol Chem ; 286(4): 2877-85, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21068381

ABSTRACT

Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.


Subject(s)
Receptors, Steroid/chemistry , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/chemistry , Receptors, Thyroid Hormone/metabolism , Vitamin A/chemistry , Vitamins/chemistry , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Humans , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Structure-Activity Relationship , Vitamin A/pharmacology , Vitamins/pharmacology
14.
Proc Natl Acad Sci U S A ; 106(23): 9138-43, 2009 Jun 09.
Article in English | MEDLINE | ID: mdl-19497877

ABSTRACT

Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.


Subject(s)
Ancylostoma/metabolism , Necator americanus/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Strongylida Infections/parasitology , Strongyloides stercoralis/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Cell Line , Cholestenes/metabolism , Crystallography, X-Ray , Humans , Larva , Models, Molecular , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/chemistry , Steroids/metabolism , Strongylida Infections/drug therapy
15.
ACS Omega ; 7(38): 34665-34675, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188294

ABSTRACT

Ornithine decarboxylase (ODC) is a rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are required for proliferation, and increased ODC activity is associated with cancer and neural over-proliferation. ODC levels and activity are therefore tightly regulated, including through the ODC-specific inhibitor, antizyme AZ1. Recently, ODC G84R has been reported as a partial loss-of-function variant that is associated with intellectual disability and seizures. However, G84 is distant from both the catalytic center and the ODC homodimerization interface. To understand how G84R modulates ODC activity, we have determined the crystal structure of ODC G84R in both the presence and the absence of the cofactor pyridoxal 5-phosphate. The structures show that the replacement of G84 by arginine leads to hydrogen bond formation of R84 with F420, the last residue of the ODC C-terminal helix, a structural element that is involved in the AZ1-mediated proteasomal degradation of ODC. In contrast, the catalytic center is essentially indistinguishable from that of wildtype ODC. We therefore reanalyzed the catalytic activity of ODC G84R and found that it is rescued when the protein is purified in the presence of a reducing agent to mimic the reducing environment of the cytoplasm. This suggests that R84 may exert its neurological effects not through reducing ODC catalytic activity but through misregulation of its AZ1-mediated proteasomal degradation.

16.
J Biol Chem ; 285(12): 9161-71, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20086010

ABSTRACT

Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Expression Regulation , Nuclear Receptor Coactivator 3/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Amino Acid Motifs , Animals , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray/methods , Humans , Inhibitory Concentration 50 , Male , Mutagenesis , Mutation , Protein Binding , Protein Structure, Tertiary
17.
PLoS Biol ; 6(9): e227, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18798693

ABSTRACT

The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 A crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix alpha10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.


Subject(s)
COUP Transcription Factor II/chemistry , Receptors, Retinoic Acid/chemistry , Amino Acid Sequence , Animals , Binding Sites , COUP Transcription Factor II/genetics , COUP Transcription Factor II/metabolism , Cell Line , Chickens , Crystallography, X-Ray , Dimerization , Female , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Sequence Alignment , Tretinoin/metabolism
18.
Science ; 373(6553): 413-419, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34437114

ABSTRACT

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility. We developed conformation-specific antibodies to trap ATP-bound AMPK in a fully inactive, dynamic state and determined its structure at 3.5-angstrom resolution using cryo-electron microscopy. A 180° rotation and 100-angstrom displacement of the kinase domain fully exposes the AL. On the basis of the structure and supporting biophysical data, we propose a multistep mechanism explaining how adenine nucleotides and pharmacological agonists modulate AMPK activity by altering AL phosphorylation and accessibility.


Subject(s)
AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/immunology , AMP-Activated Protein Kinases/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments , Models, Molecular , Phosphorylation , Protein Conformation , Protein Domains , Protein Engineering
19.
Protein Expr Purif ; 71(1): 21-7, 2010 May.
Article in English | MEDLINE | ID: mdl-19995608

ABSTRACT

The androgen receptor (AR) is a DNA-binding and hormone-activated transcription factor that plays critical roles in the development and progression of prostate cancer. The transcriptional function of AR is modulated by intermolecular interactions with DNA elements and coactivator proteins, as well as intramolecular interactions between AR domains; thus, the structural information from the full-length AR or a multi-domain fragment is essential for understanding the molecular basis of AR functions. Here we report the expression and purification of full-length AR protein and of a fragment containing its DNA-binding and ligand-binding domains connected by the hinge region in the presence of its natural ligand, dihydrotestosterone. Crystals of ligand-bound full-length AR and of the AR fragment in complex with DNA elements and coactivator motifs have been obtained and diffracted to low resolutions. These results help establish a foundation for pursuing further crystallographic studies of an AR/DNA complex.


Subject(s)
Crystallography, X-Ray/methods , DNA/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/isolation & purification , Trans-Activators/metabolism , Amino Acid Sequence , Biological Assay , Crystallization , Humans , Male , Molecular Sequence Data , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Receptors, Androgen/metabolism , Sequence Alignment , Trans-Activators/chemistry
20.
Chem Sci ; 11(8): 2260-2268, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32190280

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of glucose homeostasis and lipid metabolism, and an important target for the development of modern anti-diabetic drugs. However, current PPARγ-targeting anti-diabetic drugs such as classical thiazolidinediones (TZDs) are associated with undesirable side effects. To address this concern, we here describe the structure-based design, synthesis, identification and detailed in vitro and in vivo characterization of a novel, decanoic acid (DA)-based and selective PPARγ modulator (SPPARγM), VSP-77, especially (S)-VSP-77, as the potential "hit" for the development of improved and safer anti-diabetic therapeutics. We have also determined the co-crystal structure of the PPARγ ligand-binding domain (LBD) in complex with two molecules of (S)-VSP-77, which reveal a previously undisclosed allosteric binding mode. Overall, these findings not only demonstrate the therapeutic advantage of (S)-VSP-77 over current TZD drugs and representative partial agonist INT131, but also provide a rational basis for the development of future SPPARγMs as safe and highly efficacious anti-diabetic drugs.

SELECTION OF CITATIONS
SEARCH DETAIL