Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Sci Food Agric ; 103(8): 3961-3969, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36397255

ABSTRACT

BACKGROUND: Tofu is rich in nutrients and contains high-quality protein. However, commercial tofu products usually have weak gel strength and low water holding capacity (WHC). In the present study, the effects of selective thermal denaturation (STD) time (0-20 min, 5-min interval; 85 °C) and glycosylation (100 °C; 0, 10 and 20 g kg-1 glucose) on the quality characteristics of green soybean tofu were studied through by the evaluation method of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model for the best synergism condition of STD and glycosylation. RESULTS: Compared to STD or glycosylation, combination treatment of STD and glycosylation improved hardness, WHC, yield, protein and fat contents of green soybean tofu. Furthermore, the gel strength, WHC, yield, protein and fat contents of tofu was increased by 135.21%, 20.18%, 12.21%, 24.91%, 44.15% compared to untreated tofu. Meanwhile, synergistic treatment of STD and glycosylation significantly improved microstructure network structure of green soybean tofu and made it more homogeneous and denser. However, the green soybean tofu was faded and turned yellow under the combination of the STD and glycosylation. CONCLUSION: The results obtained through TOPSIS showed that the combination of thermal treatment (85 °C for 15 min) and glycosylation (20 g kg-1 glucose at 100 °C) had the greatest improvement in the characteristics of green soybean tofu. Hence, the combination treatment of STD and glycosylation should be useful for improving the quality characteristics of green soybean tofu and providing the technical references for industrial processing of tofu. © 2022 Society of Chemical Industry.


Subject(s)
Food Handling , Soy Foods , Food Handling/methods , Glycine max/chemistry , Glycosylation , Soy Foods/analysis , Soybean Proteins/chemistry
2.
J Obstet Gynaecol ; 43(1): 2179915, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37001548

ABSTRACT

The current study sought to investigate the effect of nimotuzumab combined with concurrent chemoradiotherapy (CCRT + Nim) on T lymphocyte subsets in middle-advanced CC. Firstly, patients with middle-advanced CC were administered CCRT or CCRT + Nim. Next, levels of T lymphocytes in peripheral blood of CC patients pre- or post-treatment and healthy females were determined by flow cytometry. The short-term efficacy was evaluated, and overall survival (OS) and progression-free survival (PFS) of patients were recorded. In addition, the correlation of T lymphocyte subsets post-treatment with OS/PFS was assessed with Pearson analysis. CC patients exhibited decreased total T cells/T helper cells/CD4+/CD8+ ratio and increased T suppressor cells/Tregs in peripheral blood. Meanwhile, CCRT and CCRT + Nim improved T lymphocyte subset imbalance, with CCRT + Nim exhibiting better efficacy. CCRT + Nim exhibited better short-term efficacy and higher PFS than CCRT, with no evident difference in OS. The levels of total T cells/T helper cells/T suppressor cells/Tregs were not significantly-correlated with OS/PFS, and the CD4+/CD8+ ratio was correlated with PFS but not OS. Collectively, CCRT + nimotuzumab ameliorate the imbalance of T lymphocyte subsets in peripheral blood of middle-advanced CC patients, and the CD4+/CD8+ ratio after therapy is correlated with PFS.IMPACT STATEMENTWhat is already known on this subject? The utilisation of Nimotuzumab targeting epidermal growth factor receptor (EGFR) combined with concurrent chemoradiotherapy (CCRT) as an efficient treatment for middle-advanced cervical cancer (CC) has garnered the attention of numerous researchers over the years. T cells represent a major immune cell type in the tumour microenvironment and serve as the basis for maintaining cellular immune functions.What do the results of this study add? Our findings revealed that nimotuzumab combined with CCRT improves the abnormality of T lymphocyte subsets in peripheral blood of patients with middle-advanced CC, such that the CD4+/CD8+ ratio after treatment was significantly correlated with progression-free survival (PFS).What are the implications of these findings for clinical practice and/or further research? CCRT of CC may have a short-term negative impact on the peripheral T-cell immune micro-environment, and the combination of nimotuzumab, cisplatin-based chemotherapy, and radiotherapy enhances the frequency of Tregs in peripheral blood. Our findings illustrated that nimotuzumab combined with CCRT can improve the imbalance of T lymphocyte subsets in peripheral blood of patients with middle-advanced CC. A better understanding of the mechanisms of these therapies will optimise the selection of patients most likely to benefit from treatment, serving as a reference for further research on the relationship between EGFR-specific T cells and clinical benefit in patients treated with nimotuzumab in combination with CCRT.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/pathology , Chemoradiotherapy/methods , T-Lymphocyte Subsets/pathology , ErbB Receptors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Tumor Microenvironment
3.
Xenobiotica ; 51(9): 1047-1059, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34319859

ABSTRACT

Podophyllotoxin (POD) is a natural compound with antiviral and anticancer activities. The purpose of the present study was to determine the metabolic map of POD in vitro and in vivo.Mouse and human liver microsomes were employed to identify POD metabolites in vitro and recombinant drug-metabolizing enzymes were used to identify the mono-oxygenase enzymes involved in POD metabolism. All in vitro incubation mixtures and bile samples from mice treated with POD were analysed with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry.A total of 38metabolites, including six phase-I metabolites and 32 phase-II metabolites, of POD were identified from bile and faeces samples after oral administration, and their structures were elucidated through interpreting MS/MS fragmentation patterns.Nine metabolites, including two phase-I metabolites, five glucuronide conjugates, and two GSH conjugates were detected in both human and mouse liver microsome incubation systems and the generation of all metabolites were NADPH-dependent. The main phase-I enzymes involved in metabolism of POD in vitro include CYP2C9, CYP2C19, CYP3A4, and CYP3A5.POD administration to mice caused hepatic and intestinal toxicity, and the cellular damage was exacerbated when 1-aminobenzotriazole, a broad-spectrum inhibitor of CYPs, was administered with POD, indicating that POD, but not its metabolites, induced hepatic and intestinal toxicities.This study elucidated the metabolic map and provides important reference basis for the safety evaluation and rational for the clinical application of POD.


Subject(s)
Chemical and Drug Induced Liver Injury , Tandem Mass Spectrometry , Animals , Antiviral Agents/toxicity , Chromatography, High Pressure Liquid , Mice , Microsomes, Liver , Podophyllotoxin
4.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2278-2282, 2019 Jun.
Article in Zh | MEDLINE | ID: mdl-31359654

ABSTRACT

Fourteen chemical constituents, including 5-hydroxy-4-methoxy-1-tetralone(1), 4,8-dihydroxy-1-tetralone(2), 4,5-dihydroxy-α-tetralone(3), blumenol B(4), dehydrovomifoliol(5), megastigm-5-ene-3,9-diol(6), juglanin B(7), blumenol C(8), loliolide(9), oleracone B(10), syringarsinol(11), pinoresinol(12), methyl 4-hydroxy-3-methoxybenzoate(13), and isovanillic acid(14), were isolated from the dichloromethane fraction of 95% methanol extract of green walnut husks by silica gel and MCI column chromatography, and Pre-HPLC. Their structures were determined by spectroscopic methods, such as NMR, MS and so on. Among them, compounds 1, 4-6, 8-13 were isolated from the green walnut husks for the first time, and compounds 4-6, 8, 10, 12, 13 were isolated from the Juglans genus for the first time. All of isolates were detected their inhibitory activities against HeLa, HGC-27 and Ht-29 cell lines by the MTT assay. The result showed that compounds 2, 3, 7, 9 and 11 exhibited inhibitory activity against the tested cell line. The IC_(50) of 7 were 26.5, 9.0, 25.4 µmol·L~(-1), respectively.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Juglans/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Chromatography, High Pressure Liquid , HT29 Cells , HeLa Cells , Humans , Molecular Structure , Phytochemicals/isolation & purification
5.
Drug Metab Dispos ; 46(4): 336-345, 2018 04.
Article in English | MEDLINE | ID: mdl-29363499

ABSTRACT

PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry-based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N-acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10-M12. The bile acid metabolites taurocholic acid and tauro-ß-muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Inactivation, Metabolic/physiology , Indans/metabolism , Sulfones/metabolism , Animals , Biotransformation/physiology , Cytochrome P-450 CYP2C19/metabolism , Hepatocytes/metabolism , Humans , Hydroxylation/physiology , Liver/metabolism , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Oxidation-Reduction
6.
Drug Metab Dispos ; 46(7): 1030-1040, 2018 07.
Article in English | MEDLINE | ID: mdl-29691238

ABSTRACT

Rutaecarpine (RUT), evodiamine (EOD), and dehydroevodiamine (DHED) are the three main bioactive indoloquinazoline alkaloids isolated from Euodia rutaecarpa, a widely prescribed traditional Chinese medicine. Here, the structure-activity relationships of these analogs for aryl hydrocarbon receptor (AHR) activation were explored by use of Ahr-deficient (Ahr-/-) mice, primary hepatocyte cultures, luciferase reporter gene assays, in silico ligand-docking studies, and metabolomics. In vitro, both mRNA analysis of AHR target genes in mouse primary hepatocytes and luciferase reporter assays in hepatocarcinoma cell lines demonstrated that RUT, EOD, and DHED significantly activated AHR, with an efficacy order of RUT > DHED > EOD. Ligand-docking analysis predicted that the methyl substitute at the N-14 atom was a key factor affecting AHR activation. In vivo, EOD was poorly orally absorbed and failed to activate AHR, whereas RUT and DHED markedly upregulated expression of the hepatic AHR gene battery in wild-type mice, but not in Ahr-/- mice. Furthermore, RUT, EOD, and DHED were not hepatotoxic at the doses used; however, RUT and DHED disrupted bile acid homeostasis in an AHR-dependent manner. These findings revealed that the methyl group at the N-14 atom of these analogs and their pharmacokinetic behaviors were the main determinants for AHR activation, and suggest that attention should be given to monitoring bile acid metabolism in the clinical use of E. rutaecarpa.


Subject(s)
Bile Acids and Salts/metabolism , Drugs, Chinese Herbal/pharmacology , Evodia/chemistry , Homeostasis/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Alkaloids/pharmacology , Animals , Cell Line, Tumor , Genes, Reporter/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Indole Alkaloids/pharmacology , Liver/diagnostic imaging , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Quinazolines/pharmacology , RNA, Messenger/metabolism , Structure-Activity Relationship , Up-Regulation/drug effects
7.
Molecules ; 23(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231489

ABSTRACT

The effects of citric acid-mediated cross-linking under non-acidic conditions on the surface hydrophobicity, solubility, emulsifying, and foaming properties of whey protein isolate (WPI) were investigated. In this research, citric acid-mediated cross-linking could not only increase the surface hydrophobicity of whey proteins at pH 7.0 and 8.0, but it also improved its emulsifying and foaming properties. The emulsifying activity and foaming ability of WPI reached a maximum under the condition of 1% citric acid and pH 7.0. However, the solubility of WPI-CA gradually decreased with pH and the content of citric acid increased. Therefore, the cross-linking mediated by citric acid under non-acidic aqueous conditions, markedly altered the surface hydrophobicity and enhanced emulsifying and foaming properties of WPI.


Subject(s)
Citric Acid/chemistry , Whey Proteins/chemistry , Whey Proteins/isolation & purification , Emulsions/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Solubility , Surface Properties
8.
Molecules ; 23(6)2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29890618

ABSTRACT

Four new sesquiterpenoids, known as diarthronchas A⁻D (1⁻4), and one known daphnauranol B (5) were isolated from the methanol extract of the roots of Diarthron tianschanica. The compounds structures were determined on the basis of spectroscopic data. All of the isolated compounds were profiled for their antineoplastic activity.


Subject(s)
Antineoplastic Agents/pharmacology , Plant Roots/chemistry , Sesquiterpenes/pharmacology , Thymelaeaceae/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chromatography, Gel , Chromatography, High Pressure Liquid , Humans , Inhibitory Concentration 50 , Sesquiterpenes/chemistry , Spectrum Analysis/methods , Structure-Activity Relationship
9.
Toxicol Appl Pharmacol ; 291: 21-7, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26706406

ABSTRACT

Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Bile Acids and Salts/biosynthesis , Camptothecin/analogs & derivatives , Interleukin-10/antagonists & inhibitors , Interleukin-10/biosynthesis , Animals , Camptothecin/toxicity , Cells, Cultured , Gene Expression Regulation , Irinotecan , Male , Mice , Mice, Inbred C57BL
10.
Xenobiotica ; 46(6): 503-10, 2016.
Article in English | MEDLINE | ID: mdl-26560012

ABSTRACT

1. Fructus psoraleae (FP) is the dried ripe seeds of Psoralea corylifolia L. (Fabaceae) widely used in Asia, and has been reported to exert important biochemical and pharmacological activities. The adverse effects of FP remain unclear. The present study aims to determine the inhibition of human carboxylesterase 1 (CES1) by FP's major ingredients, including neobavaisoflavone, corylifolinin, coryfolin, psoralidin, corylin and bavachinin. 2. The probe substrate of CES1 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) was derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT), and human liver microsomes (HLMs)-catalyzed BMBT metabolism was used to phenotype the activity of CES1. In silico docking method was employed to explain the inhibition mechanism. 3. All the tested compounds exerted strong inhibition towards the activity of CES1 in a concentration-dependent behavior. Furthermore, the inhibition kinetics was determined for the inhibition of neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin towards CES1. Both Dixon and Lineweaver-Burk plots showed that neobavaisoflavone, corylifolinin, coryfolin and corylin noncompetitively inhibited the activity of CES1, and bavachinin competitively inhibited the activity of CES1. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 9.4, 1.9, 0.7 and 0.5 µM for neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin, respectively. In conclusion, the inhibition behavior of CES1 by the FP's constituents was given in this article, indicating the possible adverse effects of FP through the disrupting CES1-catalyzed metabolism of endogenous substances and xenobiotics.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Plant Extracts/pharmacology , Psoralea/chemistry , Fabaceae , Flavonoids/pharmacology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Docking Simulation , Plant Extracts/chemistry
11.
Water Sci Technol ; 74(10): 2427-2436, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27858799

ABSTRACT

Carboxymethyl-quaternary ammonium oligochitosan (CM-QAOC) exhibited high inhibition to scaling and microbial formation and also remarkable fluorescence. In this paper its fluorescent properties and application as a fluorescent tracing chemical for industrial water treatment were studied in detail. The fluorescence intensities of CM-QAOC were in good linear agreement with its content in the concentration range of 5 to 500 mg/L and in the range of pH 7 to 9, which shows CM-QAOC can trace itself directly. The results showed the fluorescence would not be influenced by common phosphorus-containing organic and inorganic water treatment chemicals and N-dodecyl-N,N-dimethyl-benzenemethanaminium chloride. This means CM-QAOC is compatible with those chemicals. The metal ions Ca2+, Mg2+, Fe3+ and Cu2+ from raw water or corrosion products could cause obvious enhancement in fluorescence intensities and sometimes blue-shifts in the fluorescence maxima, which demonstrated CM-QAOC could also be used as tracer to monitor damages like corrosion and scaling in water systems, by varying changes of fluorescence intensities and maximum emission wavelength. The fluorescence of CM-QAOC may be influenced by NaClO, and be quenched by sunshine slightly. Its ratio of biochemical oxygen demand to chemical oxygen demand was 0.53, which indicates CM-QAOC is a biodegradable chemical. Therefore, CM-QAOC can be applied as a tracer and environmental-friendly chemical for industrial cooling water treatment.


Subject(s)
Chitin/analogs & derivatives , Quaternary Ammonium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Chitin/chemistry , Chitosan , Fluorescence , Industrial Waste , Metals/chemistry , Oligosaccharides , Phosphorus/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods
12.
Chirality ; 27(3): 189-93, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25502512

ABSTRACT

UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 µM and 31.1 µM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 µM and 3.1 µM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism.


Subject(s)
Carbazoles/pharmacology , Enzyme Inhibitors/pharmacology , Glucuronosyltransferase/antagonists & inhibitors , Carbazoles/chemistry , Drug Interactions , Enzyme Inhibitors/chemistry , Kinetics , Stereoisomerism
13.
Pharmazie ; 70(4): 239-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26012253

ABSTRACT

UDP-glucuronosyltransferases (UGTs) are involved in the clearance of many important drugs and endogenous substances, and inhibition of UGTs' activity by herbal components might induce severe herb-drug interactions or metabolic disturbances of endogenous substances. The present study aims to determine the inhibition of UGTs' activity by podophyllotoxin derivatives, trying to indicate the potential herb-drug interaction or metabolic influence towards endogenous substances' metabolism. Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the podophyllotoxin derivatives' inhibition potential. Structure-dependent inhibition behavior of podophyllotoxin derivatives towards UGT isoforms was detected. Inhibition kinetic type and parameter (Ki) were determined for the inhi- bition of podophyllotoxin towards UGT1A1, and competitive inhibition of podophyllotoxin towards UGT1A1 was observed with the inhibition kinetic parameter (Ki) to be 4.0 µM. Furthermore, podophyllotoxin was demonstrated to exert medium and weak inhibition potential towards human liver microsomes (HLMs)-catalyzed SN-38 glucuronidation and estradiol-3-glucuronidation. In conclusion, podophyllotoxin inhibited UGT1A1 activity, indicating potential herb-drug interactions between podophyllotoxin-containing herbs and drugs mainly undergoing UGT1A1-mediated metabolism.


Subject(s)
Enzyme Inhibitors/pharmacology , Glucuronosyltransferase/antagonists & inhibitors , Podophyllotoxin/pharmacology , Binding, Competitive/drug effects , Camptothecin/analogs & derivatives , Camptothecin/metabolism , Drug Interactions , Enzyme Inhibitors/chemistry , Estradiol/metabolism , Glucuronides/metabolism , Humans , Hymecromone/metabolism , In Vitro Techniques , Irinotecan , Isoenzymes/antagonists & inhibitors , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Podophyllotoxin/chemistry , Structure-Activity Relationship , Substrate Specificity , Trifluoperazine/metabolism
14.
Toxicol Appl Pharmacol ; 277(1): 86-94, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24631340

ABSTRACT

Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.


Subject(s)
Andrographis , Diterpenes/metabolism , Glucuronosyltransferase/metabolism , Herb-Drug Interactions , Diterpenes/chemistry , Enzyme Repression/drug effects , Glucuronosyltransferase/drug effects , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology
15.
Xenobiotica ; 44(11): 988-95, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24916899

ABSTRACT

1. This study is performed to investigate liver microsomal glucuronidation of Armillarisin A (A.A), an effective cholagogue drug, aiming at characterizing the involved UDP-glucuronosyltranferases (UGT) and revealing potential species differences. 2. A.A glucuronidation in human liver microsomes (HLM) generates one metabolite (M2) glucuronidated at the phenol hydroxyl group, obeying Michaelis-Menten kinetic model. Multiple isoforms including UGT1A1, 1A7, 1A9 and 2B15 can catalyze A.A glucuronidation. Kinetic assays and chemical inhibition studies both demonstrate that UGT1A9 is responsible for A.A glucuronidation in HLM. A.A glucuronidation in Cynomolgus monkey microsomes (CyLM) also follows Michaelis-Menten model, but can additionally catalyze the traced glucuronosyl substitution at the alcohol hydroxyl group (M1). The reactions in liver microsomes from Sprague-Dawley rats (RLM), ICR/CD-1 mouse (MLM), Beagle dog (DLM) all display biphasic kinetics and only M2 is detected. HLM, RLM and CyLM exhibit very similar catalytic activities towards A.A glucuronidation, with the intrinsic clearance values of respective 38, 37 and 37 µL/min/mg, which are much higher than MLM and DLM. 3. This in vitro study indicates that UGT1A9 acts as a major contributor to A.A glucuronidation in human liver, and the reaction displays large species differences.


Subject(s)
Benzopyrans/metabolism , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Animals , Dogs , Humans , Isoenzymes/metabolism , Kinetics , Macaca fascicularis , Mice, Inbred ICR , Microsomes, Liver/metabolism , Rats, Sprague-Dawley , Species Specificity , UDP-Glucuronosyltransferase 1A9
16.
Eur J Med Res ; 27(1): 211, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36303257

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] is one of the residual risk factors for cardiovascular disease (CVD) in the setting of optimal low-density lipoprotein cholesterol (LDL-C). The association between Lp(a) and CVD is still in the exploratory phase, with few studies indicating a causal connection between Lp(a) and various CVD. METHODS: Lp(a) (n = 377,590) was a genome-wide association study (GWAS) based on European populations from Neale Lab. Large GWAS datasets for CVD, including aortic aneurysm(AA) (n = 209,366), atrial fibrillation(AF) (n = 1,030,836), coronary heart disease(CHD) (n = 361,194), secondary hypertension(HBP) (n = 164,147), heart failure(HF) (n = 208,178), ischemic stroke (IS) (n = 218,792), large artery atherosclerosis stroke(ISL) (n = 150, 765), small vessel stroke(ISS) (n = 198,048), lacunar stroke(LIS) (n = 225,419), and pulmonary embolism(PE) (n = 218,413) were also based on European populations. We performed separate univariate two-sample Mendelian randomization (MR) analysis for Lp(a) and CVD as described above. We evaluated this connection mainly using the random-effects inverse variance weighted technique(IVW1) with a 95% confidence interval (CI) for the odds ratio (OR). This was supplemented by MR-Egger, weighted median, maximum likelihood, penalized weighted median, and fixed-effects inverse variance weighted methods. MR-PRESSO offers another means of statistical detection. RESULTS: Our two-sample MR, which was predominately based on IVW1, revealed a causal relationship between Lp(a) and AA (OR = 1.005, 95%CI: 1.001-1.010, P = 0.009), CHD (OR = 1.003, 95%CI 1.001-1.004, P = 0.010), and ISL (OR = 1.003, 9 5%CI 1.002-1.004, P = 9.50E-11), in addition, there is no causal association with AF, HBP, HF, IS, ISS, LIS, or PE. Similar conclusions were reached by the MR-PRESSO method. CONCLUSION: This MR study suggested a causal relationship between Lp(a) and CHD, AA, and ISL, but not associated with AF, HF, IS, LIS, ISS, HBP, or PE. Our work further verifies the association between Lp(a) and various CVD, resulting in improved Lp(a) management and a reduction in the prevalence of CVD.


Subject(s)
Cardiovascular Diseases , Stroke , Humans , Mendelian Randomization Analysis/methods , Lipoprotein(a)/genetics , Genome-Wide Association Study , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Polymorphism, Single Nucleotide/genetics
17.
Oxid Med Cell Longev ; 2022: 9233749, 2022.
Article in English | MEDLINE | ID: mdl-36406767

ABSTRACT

Mitophagy and oxidative stress play important roles in Parkinson's disease (PD). Dysregulated mitophagy exacerbates mitochondrial oxidative damage; however, the regulatory mechanism of mitophagy is unclear. Here, we provide a potential mechanistic link between c-Abl, a nonreceptor tyrosine kinase, and mitophagy in PD progression. We found that c-Abl activation reduces the interaction of prohibitin 2 (PHB2) and microtubule-associated protein 1 light chain 3 (LC3) and decreases the expressive level of antioxidative stress proteins, including nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), and the antioxidant enzyme heme oxygenase-1 (HO-1) in 1-methyl-4-phenylpyridinium- (MPP+-) lesioned SH-SY5Y cells. Importantly, we found that MPP+ can increase the expression of phosphorylated proteins at the tyrosine site of PHB2 and the interaction of c-Abl with PHB2. We showed for the first time that PHB2 by changing tyrosine (Y) to aspartate (D) at site 121 resulted in impaired binding of PHB2 and LC3 in vitro. Moreover, silencing of PHB2 can decrease the interaction of PHB2 and LC3 and exacerbate the loss of dopaminergic neurons. We also found that STI 571, a c-Abl family kinase inhibitor, can decrease dopaminergic neuron damage and ameliorate MPTP-induced behavioral deficits in PD mice. Taken together, our findings highlight a novel molecular mechanism for aberrant PHB2 phosphorylation as an inhibitor of c-Abl activity and suggest that c-Abl and PHB2 are potential therapeutic targets for the treatment of individuals with PD. However, these results need to be further validated in PHB2 Y121D mice.


Subject(s)
Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , Mitophagy , Phosphorylation , Parkinson Disease/drug therapy , TYK2 Kinase/metabolism , TYK2 Kinase/therapeutic use , Prohibitins , 1-Methyl-4-phenylpyridinium , Tyrosine/metabolism
18.
Acta Pharm Sin B ; 12(5): 2224-2238, 2022 May.
Article in English | MEDLINE | ID: mdl-35646522

ABSTRACT

Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, including fibroblast growth factor (FGF) 21, that upon release from the liver, enhanced adipose browning and energy expenditure to decrease obesity. Nineteen metabolites were increased in Cyp2e1-null mice as revealed by global untargeted metabolomics, among which four compounds, lysophosphatidylcholine and three polyunsaturated fatty acids were found to be directly metabolized by CYP2E1 and to serve as PPARα agonists, thus explaining how CYP2E1 deficiency causes hepatic PPARα activation through increasing cellular levels of endogenous PPARα agonists. Translationally, a CYP2E1 inhibitor was found to activate the PPARα-FGF21-beige adipose axis and decrease obesity in wild-type mice, but not in liver-specific Ppara-null mice. The present results establish a metabolic crosstalk between PPARα and CYP2E1 that supports the potential for a novel anti-obesity strategy of activating adipose tissue browning by targeting the CYP2E1 to modulate endogenous metabolites beyond its canonical role in xenobiotic-metabolism.

19.
Phytother Res ; 25(2): 256-63, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20641061

ABSTRACT

Corynoline, an isoquinoline alkaloid isolated from the genus Corydalis, has been demonstrated to show multiple pharmacological effects including inhibition of acetylcholinesterase, inhibition of cell adhesion, fungitoxic and cytotoxic activity. The present study focused on its metabolism and metabolism-based herb-drug interactions. After corynoline was incubated with human liver microsomes (HLMs) in the presence of NADPH, two metabolites (M-1 and M-2) were formed. Chemical inhibition experiments and assays with recombinant CYP isoforms showed that CYP2C9 was mainly involved in the formation of M-1 and CYP3A4 mainly catalysed the production of M-2. Among seven major CYP isoforms tested, corynoline showed strong inhibitory effects on the activities of CYP3A4 and CYP2C9, with an IC(50) of 3.3 ± 0.9 µm and 31.5 ± 0.5 µm, respectively. Kinetic analysis showed that inhibition of CYP3A4 by corynoline was best fit to a noncompetitive manner with K(i) of 3.2 µm, while inhibition of CYP2C9 by corynoline was best fit to a competitive manner with K(i) of 6.3 µm. Additionally, corynoline exhibited time-dependent inhibition (TDI) toward CYP3A4. The inactivation kinetic parameters (K(I) and k(inact) ) were calculated to be 6.8 µm and 0.07 min(-1) , respectively. These data are of significance for the application of corynoline and corynoline-containing herbs.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Berberine Alkaloids/pharmacology , Cytochrome P-450 CYP3A Inhibitors , Herb-Drug Interactions , Berberine Alkaloids/metabolism , Cytochrome P-450 CYP2C9 , Cytochrome P-450 CYP3A , Enzyme Inhibitors/pharmacology , Humans , Microsomes, Liver/drug effects , Time Factors
20.
Pharmazie ; 66(3): 212-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21553653

ABSTRACT

Chlormadinone acetate (CMA), a derivative of 17-a-hydroxyprogesterone, has been widely used as an orally effective progestogen in hormone replacement therapy (HRT). Glucuronidation catalyzed by UDP-glucuronosyltransferases (UGTs) is one of the major steps responsible for the metabolism of many drugs, environmental chemicals and endogenous compounds. Pharmacokinetic behaviours of drugs could be altered by inhibition of these UGT isoforms, and the search for drugs that potentially inhibit these UGT isoforms is very significant from a clinical point of view. In the present study, inhibition of five important UGT isoforms in human liver (UGT1A1, 1A3, 1A6, 1A9 and 2B7) by CMA was investigated using 4-MU as nonspecific substrate and recombinant UGT isoforms as enzyme sources. The results showed that CMA exhibited inhibitory effects on UGT1A3 (IC50 = 8.6 +/- 1.4 microM) and UGT2B7 (IC50 = 14.2 +/- 3.8 microM), with other UGT isoforms negligibly influenced. Lineweaver-Burk and Dixon plots showed that CMA noncompetitively inhibited UGT1A3 and UGT2B7. The Ki value was calculated to be 36.9 microM and 4.1 microM for UGT1A3 and UGT2B7, respectively. Considering that UGT1A3 and UGT2B7 are involved in the metabolism of many drugs, special attentions should be paid when CMA was co-administered with the drugs which mainly underwent UGT1A3, 2B7-mediated metabolism.


Subject(s)
Chlormadinone Acetate/pharmacology , Contraceptives, Oral, Hormonal/pharmacology , Glucuronosyltransferase/antagonists & inhibitors , Liver/enzymology , Humans , Isoenzymes/antagonists & inhibitors , Kinetics , Liver/drug effects , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL