Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Org Chem ; 88(13): 9283-9292, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37345958

ABSTRACT

Herein, we reported a transition-metal-free three-component trifluoromethyl heteroarylation of vinyl ethers under visible light irradiation. This protocol proceeded through a radical addition/cyclization sequence which hinged on the intrinsic nucleo/electrophilic reactivity of both the radicals, alkene, and alkynones, allowing ß-trifluoromethyl alkyl thiochromones furnished with high efficiency and excellent functional group tolerance. By virtue of this procedure, three distinct chemical bonds including C(sp2)-C(sp3), C(sp3)-C(sp3), and C(sp2)-S have been successively forged in a single pot.


Subject(s)
Metals , Vinyl Compounds , Cyclization , Light , Ethers
2.
Oxid Med Cell Longev ; 2023: 6409385, 2023.
Article in English | MEDLINE | ID: mdl-37151603

ABSTRACT

Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Phytosterols , Mice , Animals , Phytosterols/pharmacology , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Lipid Metabolism , Cholesterol, LDL , Liver/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
Org Lett ; 22(17): 6734-6738, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32790998

ABSTRACT

Herein reported is a nickel-catalyzed reductive aryl thiocarbonylation of alkene via thioester group transfer strategy by using simple and readily available thioesters. In contrast to traditional activation of weaker C(acyl)-S bond, the C(acyl)-C bond of thioester was selectively cleaved to enable this reaction under mild conditions. Furthermore, this approach features operational simplicity and broad substrate scope, providing a complementary and practical route for thioester synthesis without requiring toxic thiol or CO gas.

SELECTION OF CITATIONS
SEARCH DETAIL