Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neurol Sci ; 43(11): 6279-6298, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35927358

ABSTRACT

Clinical and experimental data hints that prolonged and repeated epileptic seizures can lead to molecular, biochemical, metabolic, and structural changes in the brain, a continuous process of chronic brain injury that ultimately leads to neuronal death. The histological characteristics of hippocampal structure determine its high sensitivity to excitotoxicity and present different types of neuronal death, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Hippocampal neuronal death promotes the progression of epileptogenesis, seizures, and epilepsy and is closely related to the impairment of cognitive function. Massive evidence indicates that oxidative stress plays a critical role in different forms of neuronal death induced by epileptic seizures. The brain is particularly vulnerable to damage caused by oxidative stress, and an increase in oxidative stress biomarkers was found in various epilepsy types. The purpose of this review is to elucidate the molecular mechanism of neuronal death and explore the moderating effect of oxidative stress on epileptic seizure-induced neuronal death patterns so as to find potential intervention targets for neuroprotective treatment after epileptic seizures.


Subject(s)
Epilepsy , Seizures , Humans , Seizures/pathology , Epilepsy/drug therapy , Oxidative Stress , Hippocampus/pathology , Neurons/pathology
2.
Diabetol Metab Syndr ; 16(1): 18, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216955

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) and its associated vascular complications have become a worldwide health concern. The effects and mechanism of vitamin D supplementation on endothelial function under high glucose condition remain elusive. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with 35 mM glucose, then 100 nM vitamin D were added. Transwell migration assay, CCK-8, immunofluorescence, flow cytometry, autophagy flux and transmission electric microscope were performed. RESULTS: Vitamin D reduced apoptosis, promoted migration and enhanced viability of HUVECs, decreased TIPE1 (Tumor necrosis factor-α-induced protein 8-like 1) under high glucose conditions. Overexpression of TIPE1 reverses the effects of vitamin D by increasing ROS production, inflammation, cell apoptosis, and suppressing autophagy, cell migration and viability. And vitamin D negatively correlated with TIPE1 mRNA level in DM patients. CONCLUSIONS: Vitamin D reverses the harmful effects of high glucose on HUVECs by reducing TIPE1 expression. And vitamin D supplementation could help to alleviate high glucose-induced injury in type 2 diabetes mellitus patients with microvascular complications.

SELECTION OF CITATIONS
SEARCH DETAIL