Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Foodborne Pathog Dis ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129487

ABSTRACT

Enterococcus spp. have been shown to have gastrointestinal tract protective functions; our recent results suggest that membrane vesicles (MVs) play an important role in the gastric protection of Enterococcus faecium (E. faecium). The specific function is determined by molecular compositions of MVs. To resolve biocargo components in E. faecium MVs (EfmMVs), MVs were isolated from E. faecium culture. Transcriptomics, label-free quantitative proteomics, and untargeted metabolomics were performed to obtain information about the complexity of ribonucleic acids (RNAs), proteins, and metabolites biocargo they carry, respectively. RNA-sequencing identified a total of 2122 transcripts. The top 20 transcripts accounted for 27.63% of total counts, which, including enzymes, participate in glycolysis, ribosomal proteins, DNA-directed RNA polymerases, protein-synthesizing relative enzymes, molecules associated with protein post-translational processing and transport, and peptidoglycan lyases. Label-free quantitative proteomics analysis identified a total of 711 proteins. The top 20 proteins accounted for 48.02% of all identified proteins, which including ribosomal proteins, enzymes participate in glycolysis, DNA-directed RNA polymerases, protein-synthesizing relative enzymes, peptidoglycan lyases, and autolysin. Untargeted metabolomics analysis identified a total of 519 metabolites. The top 20 metabolites accounted for 79.55% of all identified metabolites, which included amino acids, substrates, or products in the metabolism of amino acids, natural organic acids, products in the metabolism of organic acids, ketone compounds, and two other compounds. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the identified biocargo components enriched in metabolism, genetic, and environmental information processing. Overall, we hope that the current exploration of multiple "-omics" analyses of this EfmMVs will provide useful information and further groundwork for future studies on E. faecium application.

2.
Foodborne Pathog Dis ; 21(4): 257-267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38215267

ABSTRACT

Salmonella enterica is one of the most important zoonotic pathogens causing foodborne gastroenteritis worldwide. Outer membrane vesicles (OMVs) are lipid-bilayer vesicles produced by Gram-negative bacteria, which contain biologically active components. We hypothesized that OMVs are an important weapon of S. enterica to initiate enteric diseases pathologies. In this study, the effects of S. enterica OMVs (SeOMVs) on intestinal microbiota and intestinal barrier function were investigated. In vitro fecal culture experiments showed that alpha diversity indexes and microbiota composition were altered by SeOMV supplementation. SeOMV supplementation showed an increase of pH, a decrease of OD630 and total short chain fatty acid (SCFA) concentrations. In vitro IPEC-J2 cells culture experiments showed that SeOMV supplementation did not affect the IPEC-J2 cell viability and the indicated genes expression. In vivo experiments in mice showed that SeOMVs had adverse effects on average daily gain (p < 0.05) and feed:gain ratio (p < 0.05), and had a tendency to decrease the final body weight (p = 0.073) in mice. SeOMV administration decreased serum interleukin-10 level (p < 0.05), decreased the relative abundance of bacteria belonging to the genera BacC-u-018 and Akkermansia (p < 0.05). Furthermore, SeOMV administration damaged the ileum mucosa (p < 0.05). These findings suggest that SeOMVs play an important role in the activation of intestinal inflammatory response induced by S. enterica, and downregulation of SCFA-producing bacteria is a possible mechanism.


Subject(s)
Gastroenteritis , Gastrointestinal Microbiome , Salmonella enterica , Animals , Mice , Intestinal Barrier Function , Body Weight
3.
Microbiol Spectr ; 12(4): e0389423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488394

ABSTRACT

Recently, Enterococcus has been shown to have gastric protective functions, and the mechanisms by which Enterococcus modulates gastric function are still being investigated. Herein, we investigated how Enterococcus faecium (Efm) and E. faecium-derived extracellular vesicles (EVs) (EfmEVs) exert protective effect against ethanol-induced gastric injury by investigating the effect of EfmEVs on gastric mucosal ulcer scoring, histological lesion, mucosal glycoprotein production, acidity, anti-oxidative function, and inflammatory responses in rat. Pretreatment with Efm showed significant reduction of ethanol-induced gastric injury, as evidenced by the lowering of ulcer index, histological lesion, gastric pH, and inflammatory responses and the enhancement of mucosal glycoprotein production and anti-oxidative function. Further functional studies on three bioactive components [inactivated Efm, EfmEVs (EVs), and EV-free supernatants] of the bacterial culture showed that EVs are mostly responsible for the gastroprotective effect. Moreover, EV secretion is beneficial for the gastroprotective effect of Efm. Hence, EVs mediated the protective effect of Efm against ethanol-induced gastric injury by lowering inflammatory responses and enhancing anti-oxidative function and may be a potent anti-inflammatory and anti-oxidative strategy to alleviate hyperinflammatory gastrointestinal tract conditions.IMPORTANCEThis study indicated that Enterococcus faecium provided a protective effect against rat gastric injury, which involved improvement of the mucosal glycoprotein production, anti-oxidative function, and inflammatory responses. Furthermore, we confirmed that three bioactive components (inactivated Efm, extracellular vesicles, and EV-free supernatants) of E. faecium culture also contributed to the gastroprotective effect. Importantly, E. faecium-derived EVs showed an effective impact for the gastroprotective effect.


Subject(s)
Enterococcus faecium , Stomach Ulcer , Rats , Animals , Oxidative Stress , Ulcer , Ethanol/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Glycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL