Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752340

ABSTRACT

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.

2.
Genome Res ; 32(2): 228-241, 2022 02.
Article in English | MEDLINE | ID: mdl-35064006

ABSTRACT

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , RNA/blood , COVID-19/blood , COVID-19/genetics , Cell-Free Nucleic Acids/blood , Cytokine Release Syndrome , Humans , SARS-CoV-2
3.
PLoS Genet ; 18(12): e1010530, 2022 12.
Article in English | MEDLINE | ID: mdl-36459505

ABSTRACT

Defects in laterality pattern can result in abnormal positioning of the internal organs during the early stages of embryogenesis, as manifested in heterotaxy syndrome and situs inversus, while laterality defects account for 3~7% of all congenital heart defects (CHDs). However, the pathogenic mechanism underlying most laterality defects remains unknown. In this study, we recruited 70 laterality defect patients with CHDs to identify candidate disease genes by exome sequencing. We then evaluated rare, loss-of-function (LOF) variants, identifying candidates by referring to previous literature. We chose TRIP11, DNHD1, CFAP74, and EGR4 as candidates from 776 LOF variants that met the initial screening criteria. After the variants-to-gene mapping, we performed function research on these candidate genes. The expression patterns and functions of these four candidate genes were studied by whole-mount in situ hybridization, gene knockdown, and gene rescue methods in zebrafish models. Among the four genes, trip11, dnhd1, and cfap74 morphant zebrafish displayed abnormalities in both cardiac looping and expression patterns of early signaling molecules, suggesting that these genes play important roles in the establishment of laterality patterns. Furthermore, we performed immunostaining and high-speed cilia video microscopy to investigate Kupffer's vesicle organogenesis and ciliogenesis of morphant zebrafish. Impairments of Kupffer's vesicle organogenesis or ciliogenesis were found in trip11, dnhd1, and cfap74 morphant zebrafish, which revealed the possible pathogenic mechanism of their LOF variants in laterality defects. These results highlight the importance of rare, LOF variants in identifying disease-related genes and identifying new roles for TRIP11, DNHD1, and CFAP74 in left-right patterning. Additionally, these findings are consistent with the complex genetics of laterality defects.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Animals , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Body Patterning/genetics , Heart Defects, Congenital/metabolism , Heterotaxy Syndrome/genetics , Heterotaxy Syndrome/metabolism , Cilia/genetics , Cilia/metabolism
4.
Genomics ; 116(3): 110840, 2024 May.
Article in English | MEDLINE | ID: mdl-38580085

ABSTRACT

Conotruncal heart defects (CTD), subtypes of congenital heart disease, result from abnormal cardiac outflow tract development (OFT). FOXC1 and FOXC2 are closely related members of the forkhead transcription factor family and play essential roles in the development of OFT. We confirmed their expression pattern in mouse and human embryos, identifying four variants in FOXC1 and three in FOXC2 by screening these two genes in 605 patients with sporadic CTD. Western blot demonstrated expression levels, while Dual-luciferase reporter assay revealed affected transcriptional abilities for TBX1 enhancer in two FOXC1 variants and three FOXC2 variants. This might result from the altered DNA-binding abilities of mutant proteins. These results indicate that functionally impaired FOXC1 and FOXC2 variants may contribute to the occurrence of CTD.


Subject(s)
Forkhead Transcription Factors , Heart Defects, Congenital , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Animals , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
5.
Am J Epidemiol ; 193(3): 479-488, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37968336

ABSTRACT

Maternal poor sleep quality may increase blood pressure during pregnancy, but sound evidence is still limited and inconsistent. To evaluate whether sleep disturbances in early gestation are risk factors for the development of hypertensive disorders of pregnancy, we conducted the Early Life Plan Project from June 2016 to December 2019. Maternal sleep patterns were assessed at 12-16 weeks of gestation by using the Pittsburgh Sleep Quality Index questionnaire. For gestational hypertension and preeclampsia, we estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) using multinomial logistic regression models adjusting for potential confounders. Among 5,532 eligible women, we observed that maternal blood pressure in early gestation was significantly higher in women with low sleep efficiency (≤85%), long sleep duration (≥9 hours/night), and snoring. Compared with nonsnorers, snoring in early gestation was independently associated with preeclampsia (OR = 1.72 (95% CI: 1.09, 2.73) for snoring once or twice per week; OR = 2.06 (95% CI: 1.01, 4.31) for snoring 3 or more times per week), particularly for term preeclampsia (OR = 1.79 (95% CI: 1.08, 2.95) and 2.26 (95% CI: 1.03, 4.95), respectively). Results suggest that snoring in early gestation may be a significant risk factor for preeclampsia, with a dose-response pattern.


Subject(s)
Hypertension, Pregnancy-Induced , Pre-Eclampsia , Sleep Wake Disorders , Pregnancy , Female , Humans , Hypertension, Pregnancy-Induced/epidemiology , Pre-Eclampsia/epidemiology , Pre-Eclampsia/etiology , Snoring/complications , Snoring/epidemiology , Prospective Studies , Sleep Wake Disorders/complications , Sleep Wake Disorders/epidemiology , Sleep
6.
BMC Med ; 22(1): 27, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38317125

ABSTRACT

BACKGROUND: New "noncardiac" problems in children with congenital heart disease (CHD), such as developmental delay or long-term neurodevelopmental impairments, have attracted considerable attention in recent years. It is hypothesized that exercise might attenuate CHD-associated neurodevelopmental impairments; however, this has not been thoroughly investigated. The objective of this prospective, single-blinded, randomized controlled experiment was to evaluate the impact of customized home-based exercise for children with CHD. METHODS: Children aged 0-5 years with echocardiography-confirmed simple CHD subtypes who were scheduled to undergo cardiac catheterization were screened for enrolment. Among 420 screened CHD children, 192 were enrolled and randomly assigned at a 1:1 ratio to receive a 6-month intervention (30 min daily customized home-based exercise program with supervision for no less than 5 days per week, combined with home-based exercise education) or control treatment (home-based education). The primary outcome was motor development (gross motor quotient (GMQ), fine motor quotient (FMQ), and total motor quotient (TMQ)). The secondary outcomes were cardiac function and structure, bone quality, physical development, parental anxiety, caregiver burden, and quality of life. Children and their families were assessed before and 1, 3, and 6 months after catheterization; 183 (95.3%) children were included in the primary analysis. RESULTS: After 6-month treatment, the intervention group significantly increased their motor quotient, which was consistently higher than that of the control group (GMQ p < 0.0001, FMQ p = 0.02, TMQ p < 0.001). The physical developments in height, weight, and circumferences of the upper-arm, chest, and head were also significantly improved by exercise (all p < 0.017). No significant improvements in the bone strength or the cardiac structure and function were found among patients in the intervention group (all p > 0.017). For parents, higher quality of life level (total score p = 0.016) was observed in the intervention group; while effects of exercise on the anxiety (rude score p = 0.159, standard score p = 0.159) or the Zarit caregiver burden scale score (p = 0.404) were non-significant. No adverse events occurred during the study period. CONCLUSIONS: Customized home-based exercise improved motor development in children with CHD. While the long-term effects of parent training in home-based exercise are unknown, the study results suggest positive outcomes. TRIAL REGISTRATION: A home-based exercise program in congenital heart disease children with cardiac catheterization: a randomized controlled trial. ( http://www.chictr.org.cn/ , ChiCTR-IOR-16007762, January 14, 2016).


Subject(s)
Heart Defects, Congenital , Psychological Tests , Quality of Life , Self Report , Child , Humans , Prospective Studies , Heart Defects, Congenital/therapy , Parents
7.
Small ; : e2402028, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970557

ABSTRACT

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

8.
Planta ; 259(5): 116, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592549

ABSTRACT

MAIN CONCLUSION: Differentially expressed microRNAs were found associated with the development of chasmogamous and cleistogamous flowers in Viola prionantha, revealing potential roles of microRNAs in the developmental evolution of dimorphic flowers. In Viola prionantha, chasmogamous (CH) flowers are induced by short daylight, while cleistogamous (CL) flowers are triggered by long daylight. How environmental factors and microRNAs (miRNAs) affect dimorphic flower formation remains unknown. In this study, small RNA sequencing was performed on CH and CL floral buds at different developmental stages in V. prionantha, differentially expressed miRNAs (DEmiRNAs) were identified, and their target genes were predicted. In CL flowers, Viola prionantha miR393 (vpr-miR393a/b) and vpr-miRN3366 were highly expressed, while in CH flowers, vpr-miRN2005, vpr-miR172e-2, vpr-miR166m-3, vpr-miR396f-2, and vpr-miR482d-2 were highly expressed. In the auxin-activated signaling pathway, vpr-miR393a/b and vpr-miRN2005 could target Vpr-TIR1/AFB and Vpr-ARF2, respectively, and other DEmiRNAs could target genes involved in the regulation of transcription, e.g., Vpr-AP2-7. Moreover, Vpr-UFO and Vpr-YAB5, the main regulators in petal and stamen development, were co-expressed with Vpr-TIR1/AFB and Vpr-ARF2 and showed lower expression in CL flowers than in CH flowers. Some V. prionantha genes relating to the stress/defense responses were co-expressed with Vpr-TIR1/AFB, Vpr-ARF2, and Vpr-AP2-7 and highly expressed in CL flowers. Therefore, in V. prionantha, CH-CL flower development may be regulated by the identified DEmiRNAs and their target genes, thus providing the first insight into the formation of dimorphic flowers in Viola.


Subject(s)
MicroRNAs , Viola , Flowers/genetics , MicroRNAs/genetics , Reproduction , Sequence Analysis, RNA
9.
J Transl Med ; 22(1): 512, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807223

ABSTRACT

In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor transcriptome and patients' prognoses across cancers, we investigated dysregulated and prognosis-associated genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, which could add value to the clinical staging system for improved prediction of patients' survival. Furthermore, we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards better healthcare and precision oncology of cancer patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms , Precision Medicine , Transcriptome , Humans , Transcriptome/genetics , Neoplasms/genetics , Neoplasms/classification , Neoplasms/pathology , Prognosis , Gene Expression Profiling , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/pathology , Mutation/genetics , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/classification , Liver Neoplasms/pathology , Medical Oncology/methods
10.
BMC Microbiol ; 24(1): 93, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515035

ABSTRACT

Plant growth promoting microbe assisted phytoremediation is considered a more effective approach to rehabilitation than the single use of plants, but underlying mechanism is still unclear. In this study, we combined transcriptomic and physiological methods to explore the mechanism of plant growth promoting microbe Trichoderma citrinoviride HT-1 assisted phytoremediation of Cd contaminated water by Phragmites australis. The results show that the strain HT-1 significantly promoted P. australis growth, increased the photosynthetic rate, enhanced antioxidant enzyme activities. The chlorophyll content and the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were increased by 83.78%, 23.17%, 47.60%, 97.14% and 12.23% on average, and decreased the content of malondialdehyde (MDA) by 31.10%. At the same time, strain HT-1 improved the absorption and transport of Cd in P. australis, and the removal rate of Cd was increased by 7.56% on average. Transcriptome analysis showed that strain HT-1 induced significant up-regulated the expression of genes related to oxidative phosphorylation and ribosome pathways, and these upregulated genes promoted P. australis remediation efficiency and resistance to Cd stress. Our results provide a mechanistic understanding of plant growth promoting microbe assisted phytoremediation under Cd stress.


Subject(s)
Cadmium , Hypocreales , Soil Pollutants , Cadmium/analysis , Biodegradation, Environmental , Water , Antioxidants/metabolism , Poaceae/metabolism , Gene Expression Profiling , Soil Pollutants/metabolism
11.
Ann Neurol ; 94(6): 1136-1154, 2023 12.
Article in English | MEDLINE | ID: mdl-37597256

ABSTRACT

OBJECTIVE: Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS: We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS: We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION: We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.


Subject(s)
Intellectual Disability , Neural Stem Cells , Mice , Animals , Humans , Neural Stem Cells/metabolism , Signal Transduction/genetics , Cyclins/metabolism , Apoptosis
12.
J Magn Reson Imaging ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376448

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI)-based virtual MR elastography (DWI-vMRE) in the assessment of breast lesions is still in the research stage. PURPOSE: To investigate the usefulness of elasticity values on DWI-vMRE in the evaluation of breast lesions, and the correlation with the values calculated from shear-wave elastography (SWE). STUDY TYPE: Prospective. POPULATION/SUBJECTS: 153 patients (mean age ± standard deviation: 55 ± 12 years) with 153 pathological confirmed breast lesions (24 benign and 129 malignant lesions). FIELD STRENGTH/SEQUENCE: 1.5-T MRI, multi-b readout segmented echo planar imaging (b-values of 0, 200, 800, and 1000 sec/mm2 ). ASSESSMENT: For DWI-vMRE assessment, lesions were manually segmented using apparent diffusion coefficient (ADC0-1000 ) map, then the region of interests were copied to the map of shifted-ADC (sADC200-800 , sADC 200-1500 ). For SWE assessment, the shear modulus of the lesions was measured by US elastic modulus (µUSE ). Intraclass/interclass kappa coefficients were calculated to measure the consistency. STATISTICAL TESTS: Pearson's correlation was used to assess the relationship between sADC and µUSE . A receiver operating characteristic analysis with the area under the curve (AUC) was performed to compare the diagnostic accuracy between benign and malignant breast lesions of sADC and µUSE . A P value <0.05 was considered statistically significant. RESULTS: There were significant differences between benign and malignant breast lesions of µUSE (24.17 ± 10.64 vs. 37.20 ± 12.61), sADC200-800 (1.38 ± 0.31 vs. 0.97 ± 0.18 × 10-3 mm2 /sec), and sADC200-1500 (1.14 ± 0.30 vs. 0.78 ± 0.13 × 10-3 mm2 /sec). In all breast lesions, a moderate but significant correlation was observed between µUSE and sADC200-800 /sADC200-1500 (r = -0.49/-0.44). AUC values to differentiate benign from malignant lesions were as follows: µUSE , 0.78; sADC200-800 , 0.89; sADC200-1500 , 0.89. DATA CONCLUSIONS: Both SWE and DWI-vMRE could be used for the differentiation of benign versus malignant breast lesions. Furthermore, DWI-vMRE with the use of sADC show relatively higher AUC values than SWE. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.

13.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200323

ABSTRACT

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

14.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884407

ABSTRACT

Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.

15.
J Plant Res ; 137(4): 605-617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506958

ABSTRACT

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.


Subject(s)
Boraginaceae , Flowers , Plant Nectar , Pollination , Reproduction , Pollination/physiology , Flowers/physiology , Animals , Bees/physiology , Reproduction/physiology , Plant Nectar/physiology , Boraginaceae/physiology , Pollen/physiology
16.
BMC Health Serv Res ; 24(1): 653, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773420

ABSTRACT

BACKGROUND: Implicit absenteeism is very common among nurses. Poor perceived social support of intensive care unit nurses has a negative impact on their mental and physical health. There is evidence that lack of occupational coping self-efficacy can promote implicit absenteeism; however, the relationship between lack of occupational coping self-efficacy in perceived social support and implicit absenteeism of intensive care unit nurses is unclear. Therefore, this study aimed to evaluate the role of perceived social support between lack of occupational coping self-efficacy and implicit absenteeism of intensive care unit nurses, and to provide reliable evidence to the management of clinical nurses. METHODS: A cross-sectional study of 517 intensive care unit nurses in 10 tertiary hospitals in Sichuan province, China was conducted, of which 474 were valid questionnaires with a valid recovery rate of 91.6%. The survey tools included the Chinese version of Implicit Absenteeism Scale, the Chinese version of Perceived Social Support Scale, the Chinese version of Occupational Coping Self-Efficacy Scale and the Sociodemographic characteristics. Descriptive analysis and Pearson correlation analysis were performed using SPSS version 22.0, while the mediating effects were performed using AMOS version 24.0. RESULTS: The average of intensive care unit nurses had a total implicit absenteeism score of (16.87 ± 3.98), in this study, the median of intensive care unit nurses' implicit absenteeism score was 17, there were 210 intensive care unit nurses with low implicit absenteeism (44.3%) and 264 ICU nurses with high implicit absenteeism (55.7%). A total perceived social support score of (62.87 ± 11.61), and a total lack of occupational coping self-efficacy score of (22.78 ± 5.98). The results of Pearson correlation analysis showed that implicit absenteeism was negatively correlated with perceived social support (r = -0.260, P < 0.001) and positively correlated with lack of occupational coping self-efficacy (r = 0.414, P < 0.001). In addition, we found that perceived social support plays a mediating role in lack of occupational coping self-efficacy and implicit absenteeism [ß = 0.049, 95% CI of (0.002, 0.101)]. CONCLUSIONS: Intensive care unit nurses had a high level of implicit absenteeism with a moderate level of perceived social support and lack of occupational coping self-efficacy. Nursing managers should pay attention to the nurses those who were within low levels of social support and negative coping strategies, and take measures to reduce intensive care unit nurses' professional stress, minimize implicit absenteeism.


Subject(s)
Absenteeism , Adaptation, Psychological , Intensive Care Units , Self Efficacy , Social Support , Humans , Cross-Sectional Studies , Female , Male , Adult , China , Surveys and Questionnaires , Nursing Staff, Hospital/psychology , Middle Aged , Critical Care Nursing
17.
Ecotoxicol Environ Saf ; 274: 116220, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38513531

ABSTRACT

Previous research investigating the correlation between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and subsequent blood pressure (BP) in offspring has yielded limited and contradictory findings. This study was conducted to investigate the potential relationship between maternal PFAS levels during pregnancy and subsequent BP in early childhood. A total of 129 expectant mothers from the Shanghai Birth Cohort were included in the study. Using high-performance liquid chromatography/tandem mass spectrometry, we measured ten PFAS compounds in maternal plasma throughout the pregnancy. When the children reached the age of 4, we examined their systolic BP (SBP) and diastolic BP (DBP), along with mean arterial pressure (MAP) and pulse pressure (PP). Data interpretation employed multiple linear and logistic regression models, complemented by Bayesian kernel machine regression (BKMR).We found that the majority of PFAS concentrations remained stable during pregnancy. The linear and BKMR models indicated a positive relationship between the PFAS mixture in maternal plasma and offspring's DBP and MAP, with perfluorohexanesulphonic acid (PFHxS) having the most significant influence (PFHxS and DBP [first trimester:ß=3.03, 95%CI: (1.01,5.05); second trimester: ß=2.35, 95%CI: (0.94,3.75); third trimester: ß=2.57, 95%CI:(0.80,4.34)]; MAP [first trimester:ß=2.55, 95%CI: (0.64,4.45); second trimester: ß=2.28, 95%CI: (0.95,3.61); third trimester: ß=2.35, 95%CI:(0.68,4.01)]). Logistic regression highlighted an increased risk of prehypertension and hypertension in offspring with higher maternal PFHxS concentrations during all three trimesters [first trimester: OR=2.53, 95%CI:(1.11,5.79), second trimester: OR=2.05, 95%CI:(1.11,3.78), third trimester: OR=3.08, 95%CI:(1.40,6.79)]. A positive correlation was identified between the half-lives of PFAS and the odds ratio (OR) of prehypertension and hypertension in childhood (ß=0.139, P=0.010). In conclusion, this research found maternal plasma PFAS concentrations to be positively associated with BP in offspring, with PFHxS showing the most significant influence. This correlation remained consistent throughout pregnancy, and this effect was proportional to the half-lives of PFAS.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Hypertension , Prehypertension , Child , Pregnancy , Female , Humans , Child, Preschool , Blood Pressure , Prehypertension/chemically induced , Bayes Theorem , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , China , Hypertension/chemically induced , Alkanesulfonic Acids/toxicity
18.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Article in English | MEDLINE | ID: mdl-38583312

ABSTRACT

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Fluorocarbons , Phenols , Male , Endocrine Disruptors/toxicity , Phenols/toxicity , Benzhydryl Compounds/toxicity , Humans , Animals , Reproductive Health , Reproduction/drug effects , Genitalia, Male/drug effects , Spermatogenesis/drug effects , Hypothalamo-Hypophyseal System/drug effects , Testis/drug effects
19.
Genomics ; 115(5): 110676, 2023 09.
Article in English | MEDLINE | ID: mdl-37406974

ABSTRACT

OBJECTIVE: Deleterious genetic variants comprise one cause of cardiac conotruncal defects (CTDs). Genes associated with CTDs are gradually being identified. In the present study, we aimed to explore the profile of genetic variants of CTD-associated genes in Chinese patients with non-syndromic CTDs. METHODS: Thirty-nine CTD-related genes were selected after reviewing published articles in NCBI, HGMD, OMIM, and HPO. In total, 605 patients with non-syndromic CTDs and 300 healthy controls, all of Han ethnicity, were recruited. High-throughput targeted sequencing was used to detect genetic variants in the protein-coding regions of genes. We performed rigorous variant-level filtrations to identify potentially damaging variants (Dvars) using prediction programs including CADD, SIFT, PolyPhen-2, and MutationTaster. RESULT: Dvars were detected in 66.7% (26/39) of the targeted CTD-associated genes. In total, 11.07% (67/605) of patients with non-syndromic CTDs were found to carry one or more Dvars in targeted CTD-associated genes. Dvars in FOXH1, TBX2, NFATC1, FOXC2, and FOXC1 were common in the CTD cohort (1.5% [9/605], 1.2% [7/605], 1.2% [7/605], 1% [6/605], and 0.5% [3/605], respectively). CONCLUSION: Targeted exon sequencing is a cost-effective approach for the genetic diagnosis of CTDs. Our findings contribute to an understanding of the genetic architecture of non-syndromic CTDs.


Subject(s)
East Asian People , Heart Defects, Congenital , Child , Humans , East Asian People/genetics , Ethnicity , Heart Defects, Congenital/genetics , Transcription Factors
20.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37059908

ABSTRACT

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , COVID-19/diagnosis , Cell-Free Nucleic Acids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL