Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38555474

ABSTRACT

As key oncogenic drivers in non-small-cell lung cancer (NSCLC), various mutations in the epidermal growth factor receptor (EGFR) with variable drug sensitivities have been a major obstacle for precision medicine. To achieve clinical-level drug recommendations, a platform for clinical patient case retrieval and reliable drug sensitivity prediction is highly expected. Therefore, we built a database, D3EGFRdb, with the clinicopathologic characteristics and drug responses of 1339 patients with EGFR mutations via literature mining. On the basis of D3EGFRdb, we developed a deep learning-based prediction model, D3EGFRAI, for drug sensitivity prediction of new EGFR mutation-driven NSCLC. Model validations of D3EGFRAI showed a prediction accuracy of 0.81 and 0.85 for patients from D3EGFRdb and our hospitals, respectively. Furthermore, mutation scanning of the crucial residues inside drug-binding pockets, which may occur in the future, was performed to explore their drug sensitivity changes. D3EGFR is the first platform to achieve clinical-level drug response prediction of all approved small molecule drugs for EGFR mutation-driven lung cancer and is freely accessible at https://www.d3pharma.com/D3EGFR/index.php.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Mutation , Information Storage and Retrieval
2.
J Virol ; 98(5): e0025324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591878

ABSTRACT

Coronavirus (CoV) 3C-like protease (3CLpro) is essential for viral replication and is involved in immune escape by proteolyzing host proteins. Deep profiling the 3CLpro substrates in the host proteome extends our understanding of viral pathogenesis and facilitates antiviral drug discovery. Here, 3CLpro from porcine epidemic diarrhea virus (PEDV), an enteropathogenic CoV, was used as a model which to identify the potential 3CLpro cleavage motifs in all porcine proteins. We characterized the selectivity of PEDV 3CLpro at sites P5-P4'. We then compiled the 3CLpro substrate preferences into a position-specific scoring matrix and developed a 3CLpro profiling strategy to delineate the protein substrate landscape of CoV 3CLpro. We identified 1,398 potential targets in the porcine proteome containing at least one putative cleavage site and experimentally validated the reliability of the substrate degradome. The PEDV 3CLpro-targeted pathways are involved in mRNA processing, translation, and key effectors of autophagy and the immune system. We also demonstrated that PEDV 3CLpro suppresses the type 1 interferon (IFN-I) cascade via the proteolysis of multiple signaling adaptors in the retinoic acid-inducible gene I (RIG-I) signaling pathway. Our composite method is reproducible and accurate, with an unprecedented depth of coverage for substrate motifs. The 3CLpro substrate degradome establishes a comprehensive substrate atlas that will accelerate the investigation of CoV pathogenicity and the development of anti-CoV drugs.IMPORTANCECoronaviruses (CoVs) are major pathogens that infect humans and animals. The 3C-like protease (3CLpro) encoded by CoV not only cleaves the CoV polyproteins but also degrades host proteins and is considered an attractive target for the development of anti-CoV drugs. However, the comprehensive characterization of an atlas of CoV 3CLpro substrates is a long-standing challenge. Using porcine epidemic diarrhea virus (PEDV) 3CLpro as a model, we developed a method that accurately predicts the substrates of 3CLpro and comprehensively maps the substrate degradome of PEDV 3CLpro. Interestingly, we found that 3CLpro may simultaneously degrade multiple molecules responsible for a specific function. For instance, it cleaves at least four adaptors in the RIG-I signaling pathway to suppress type 1 interferon production. These findings highlight the complexity of the 3CLpro substrate degradome and provide new insights to facilitate the development of anti-CoV drugs.


Subject(s)
Coronavirus 3C Proteases , Porcine epidemic diarrhea virus , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , HEK293 Cells , Interferon Type I/metabolism , Proteolysis , Proteome/metabolism , Substrate Specificity , Swine , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication
3.
Clin Gastroenterol Hepatol ; 22(8): 1586-1595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38382725

ABSTRACT

BACKGROUND & AIMS: Gallstones are common and associated with substantial health and economic burden. We aimed to comprehensively evaluate the prevalence and incidence of gallstones in the 21st century. METHODS: We systematically searched PubMed and Embase to identify studies reporting the prevalence and/or incidence of gallstones between January 1, 2000, and November 18, 2023. Pooled prevalence and incidence were calculated using DerSimonian and Laird's random-effects model. We performed subgroup analyses and meta-regression based on age, sex, geographic location, population setting, and modality of detection to examine sources of heterogeneity. RESULTS: Based on 115 studies with 32,610,568 participants, the pooled prevalence of gallstones was 6.1% (95% CI, 5.6-6.5). Prevalence was higher in females vs males (7.6% vs 5.4%), in South America vs Asia (11.2% vs 5.1%), in upper-middle-income countries vs high-income countries (8.9% vs 4.0%), and with advancing age. On sensitivity analysis of population-based studies, the prevalence of gallstones was 5.5% (95% CI, 4.1-7.4; n = 44 studies), and when limiting subgroup analysis to imaging-based detection modalities, the prevalence was 6.7% (95% CI, 6.1-7.3; n = 101 studies). Prevalence has been stable over the past 20 years. Based on 12 studies, the incidence of gallstones was 0.47 per 100 person-years (95% CI, 0.37-0.51), without differences between males and females, and with increasing incidence in more recent studies. CONCLUSIONS: Globally, 6% of the population have gallstones, with higher rates in females and in South America. The incidence of gallstones may be increasing. Our findings call for prioritizing research on the prevention of gallstones.


Subject(s)
Gallstones , Global Health , Humans , Gallstones/epidemiology , Incidence , Prevalence , Female , Male
4.
Cancer Immunol Immunother ; 73(5): 85, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554185

ABSTRACT

TGF-ß1 and TGF-ßR1 play important roles in immune and inflammatory responses. Genetic variants of TGF-ß1 rs1800470 and TGF-ßR1 rs334348 have emerged as potentially prognostic biomarkers for HPV-related head and neck cancer, while their prognostic effect on survival of smoking-related head and neck cancer remains unknown. This study included 1403 patients with smoking-related head and neck cancer, and all these patients were genotyped for TGF-ß1 rs1800470 and TGF-ßR1 rs334348. Both univariate and multivariate analyses were performed to evaluate associations between the two functional genetic variants in microRNA binding sites of TGF-ß1 and TGF-ßR1 and survivals. Patients with TGF-ß1 rs1800470 CT or CC genotype had 30-35% risk reductions for OS, DSS, and DFS compared to patients with TT genotype among overall patients, ever smokers, and patients administered chemoradiation. Furthermore, patients with TGF-ßR1 rs334348 GA or GG genotype had significant 50-60% risk reductions for OS, DSS, and DFS compared to patients with AA genotype among overall patients and patients administered chemoradiation; among ever smokers, the risk reductions even reached 60-70%. The TCGA dataset was used for validation. These findings suggest that TGF-ß1 rs1800470 and TGF-ßR1 rs334348 significantly affect survival outcomes in patients with smoking-related head and neck cancer, especially in the subgroups of ever smokers and patients treated with chemoradiation. These genetic variants may serve as prognostic indicators for patients with smoking-related head and neck cancer and could play a role in advancing the field of personalized chemoradiation, thereby improving patient survival and quality of life.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Transforming Growth Factor beta1/genetics , Quality of Life , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Smoking/adverse effects
5.
Small ; 20(29): e2310465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366001

ABSTRACT

The modification of metal oxides with noble metals is one of the most effective means of improving gas-sensing performance of chemiresistors, but it is often accompanied by unintended side effects such as sensor resistance increases up to unmeasurable levels. Herein, a carbonization-oxidation method is demonstrated using ultrasonic spray pyrolysis technique to realize platinum (Pt) single atom (SA) substitutional doping into SnO2 (named PtSA-SnO2). The substitutional doping strategy can obviously enhance gas-sensing properties, and meanwhile decrease sensor resistance by two orders of magnitude (decreased from ≈850 to ≈2 MΩ), which are attributed to the tuning of band gap and fermi-level position, efficient single atom catalysis, and the raising of adsorption capability of formaldehyde, as validated by the state-of-the-art characterizations, such as spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in situ diffuse reflectance infrared Fourier transformed spectra (in situ DRIFT), CO temperature-programmed reduction (CO-TPR), and theoretical calculations. As a proof of concept, the developed PtSA-SnO2 sensor shows humidity-independent (30-70% relative humidity) gas-sensing performance in the selective detection of formaldehyde with high response, distinguishable selectivity (8< Sformaldehyde/Sinterferant <14), and ultra-low detection limit (10 ppb). This work presents a generalized and facile method to design high-performance metal oxides for chemical sensing of volatile organic compounds (VOCs).

6.
Mol Carcinog ; 63(9): 1722-1737, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837510

ABSTRACT

Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.


Subject(s)
Genetic Predisposition to Disease , Head and Neck Neoplasms , Neoplasm Recurrence, Local , Polymorphism, Single Nucleotide , Squamous Cell Carcinoma of Head and Neck , Humans , Male , Female , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Middle Aged , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Telomere Homeostasis/genetics , Telomere/genetics , Aged , Genome-Wide Association Study , Genotype , Risk Factors , Prognosis , Adult
7.
J Med Virol ; 96(1): e29382, 2024 01.
Article in English | MEDLINE | ID: mdl-38235833

ABSTRACT

Japanese encephalitis (JE) caused by JE virus (JEV), remains a global public health concern. Currently, there is no specific antiviral drug approved for the treatment of JE. While vaccines are available for prevention, they may not cover all at-risk populations. This underscores the urgent need for prophylaxis and potent anti-JEV drugs. In this context, a high-content JEV reporter system expressing Nanoluciferase (Nluc) was developed and utilized for a high-throughput screening (HTS) of a commercial antiviral library to identify potential JEV drug candidates. Remarkably, this screening process led to the discovery of five drugs with outstanding antiviral activity. Further mechanism of action analysis revealed that cepharanthine, an old clinically approved drug, directly inhibited virus replication by blocking GTP binding to the JEV RNA-dependent RNA polymerase. Additionally, treatment with cepharanthine in mice models alleviated JEV infection. These findings warrant further investigation into the potential anti-JEV activity of cepharanthine as a new therapeutic approach for the treatment of JEV infection. The HTS method employed here proves to be an accurate and convenient approach that facilitates the rapid development of antiviral drugs.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Mice , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/drug therapy , High-Throughput Screening Assays , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication
8.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

9.
Microb Pathog ; 190: 106614, 2024 May.
Article in English | MEDLINE | ID: mdl-38492825

ABSTRACT

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , Aquaculture
10.
Cancer Cell Int ; 24(1): 258, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034386

ABSTRACT

Immune checkpoint blockade therapy targeting the programmed death-1(PD-1) pathway has shown remarkable efficacy and durable response in patients with various cancer types. Early prediction of therapeutic efficacy is important for optimizing treatment plans and avoiding potential side effects. In this work, we developed an efficient machine learning prediction method using routine hematologic and biochemical parameters to predict the efficacy of PD-1 combination treatment in Pan-Cancer patients. A total of 431 patients with nasopharyngeal carcinoma, esophageal cancer and lung cancer who underwent PD-1 checkpoint inhibitor combination therapy were included in this study. Patients were divided into two groups: progressive disease (PD) and disease control (DC) groups. Hematologic and biochemical parameters were collected before and at the third week of PD-1 therapy. Six machine learning models were developed and trained to predict the efficacy of PD-1 combination therapy at 8-12 weeks. Analysis of 57 blood biomarkers before and after three weeks of PD-1 combination therapy through statistical analysis, heatmaps, and principal component analysis did not accurately predict treatment outcome. However, with machine learning models, both the AdaBoost classifier and GBDT demonstrated high levels of prediction efficiency, with clinically acceptable AUC values exceeding 0.7. The AdaBoost classifier exhibited the highest performance among the 6 machine learning models, with a sensitivity of 0.85 and a specificity of 0.79. Our study demonstrated the potential of machine learning to predict the efficacy of PD-1 combination therapy based on changes in hematologic and biochemical parameters.

11.
BMC Cancer ; 24(1): 480, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627684

ABSTRACT

BACKGROUND: The treatment of hepatocellular carcinoma (HCC) patients exhibiting high-risk characteristics (Vp4, and/or bile duct invasion, and/or tumor occupancy ≥ 50%) lacks standardized approaches and yields unfavorable results. This study endeavors to evaluate the safety, efficacy, and prognostic impacts of employing hepatic arterial infusion chemotherapy (HAIC), lenvatinib, and humanized programmed death receptor-1 (PD-1) in the treatment of high-risk HCC patients. METHODS: In this retrospective analysis, HCC patients with high-risk features were treated with either lenvatinib combined with PD-1 (LEN-PD1) or a combination of HAIC, lenvatinib, and PD-1 (HAIC-LEN-PD1). The study assessed the antitumor efficacy by calculating overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). Treatment-related adverse events (TRAEs) were analyzed to assess the safety profiles. RESULTS: Between June 2019 and September 2022, a total of 61 patients were included in the LEN-PD1 group, while 103 patients were enrolled in the HAIC-LEN-PD1 group. The OS was 9.8 months in the LEN-PD1 group, whereas the HAIC-LEN-PD1 group exhibited a significantly longer median OS of 19.3 months (HR = 0.43, p < 0.001). Furthermore, PFS was notably extended in the HAIC-LEN-PD1 group compared to the LEN-PD1 group (9.6 months vs. 4.9 months, HR = 0.48, p < 0.001). Patients in the HAIC-LEN-PD1 group had a higher ORR and DCR according to the modified RECIST (76.7% vs. 23.0%, p < 0.001; 92.2% vs. 72.1%, p = 0.001). HAIC-LEN-HAIC group led to more adverse events than LEN-PD1 group, most of which were tolerable and controllable. CONCLUSION: Lenvatinib, HAIC and PD-1 showed safe and promising anti-tumor activity compared with lenvatinib alone for HCC with high-risk features.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies , Liver Neoplasms/drug therapy
12.
BMC Cancer ; 24(1): 922, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080642

ABSTRACT

Lenvatinib, a multitarget kinase inhibitor, has been proven to be effective in the treatment of advanced hepatocellular carcinoma. It has been previously demonstrated that tumour associated macrophages (TAMs) in tumour tissues can promote HCC growth, invasion and metastasis. Furthermore, lenvatinib has certain immunomodulatory effects on the treatment of HCC. However, the role of lenvatinib in macrophage polarization during HCC treatment has not been fully explored. In this study, we used a variety of experimental methods both in vitro and in vivo to investigate the effect of lenvatinib on TAMs during HCC progression. This study is the first to show that lenvatinib can alter macrophage polarization in both humans and mice. Moreover, macrophages treated with lenvatinib in vitro displayed enhanced classically activated macrophages (M1) activity and suppressed liver cancer cell proliferation, invasion, and migration. Furthermore, during the progression of M1 macrophage polarization induced by lenvatinib, STAT-1 was the main target transcription factor, and inhibiting STAT-1 activity reversed the effect of lenvatinib. Overall, the present study provides a theoretical basis for the immunomodulatory function of lenvatinib in the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Liver Neoplasms , Phenylurea Compounds , Quinolines , STAT1 Transcription Factor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Quinolines/pharmacology , Quinolines/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , STAT1 Transcription Factor/metabolism , Animals , Mice , Humans , Cell Proliferation/drug effects , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Macrophage Activation/drug effects , Male , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology
13.
Neuroepidemiology ; 58(3): 182-198, 2024.
Article in English | MEDLINE | ID: mdl-38295785

ABSTRACT

OBJECTIVE: The objective of this study was to study the primary risk factors for the long-term trends of mortality rates in ischemic stroke (IS) in China. METHODS: Using the Global Burden of Disease Study 2019 (GBD 2019) database, research was conducted on the 11 primary risk factors for the mortality rates of IS in China from 1990 to 2019. This study employed joinpoint regression software and the age-period-cohort method to evaluate the trends of mortality rates divided by age, period, and cohort over time. RESULTS: From 1990 to 2019, the age-standardized mortality rate (ASMR) caused by a diet high in red meat and high body mass index in China showed an upward trend. ASMR increased first and then decreased due to smoking, diet high in sodium, particulate matter pollution, high fasting plasma glucose, and high systolic blood pressure. Low-density lipoprotein cholesterol (LDL-C), kidney dysfunction, low temperature, and lead exposure remained relatively stable during this period. In the 35-45 age group, the mortality rate of IS due to high LDL-C was up to about 60%, and smoking affected men more than women. Overall, high LDL-C, high systolic blood pressure, and particulate matter pollution were the most common risk factors in patients with IS. The risk of death rose with age. The period and cohort relative risks showed that metabolic risk factors had the greatest impact on the mortality of IS. CONCLUSION: Metabolic risk factors have become the primary risk factors for the ASMR of IS in China. Relevant authorities should pay attention to their long-term effects on IS. Effective public health policies and interventions should be implemented to reduce the burden of IS.


Subject(s)
Ischemic Stroke , Humans , China/epidemiology , Middle Aged , Male , Female , Risk Factors , Aged , Adult , Ischemic Stroke/mortality , Ischemic Stroke/epidemiology , Cohort Studies , Aged, 80 and over , Age Factors , Young Adult , Mortality/trends
14.
Ann Hematol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012515

ABSTRACT

INTRODUCTION: Lymphoma tissue biopsies cannot fully capture genetic features due to accessibility and heterogeneity. We aimed to assess the applicability of circulating tumor DNA (ctDNA) for genomic profiling and disease surveillance in classic Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and diffuse large B-cell lymphoma (DLBCL). METHODS: Tumor tissue and/or liquid biopsies of 49 cHLs, 32 PMBCLs, and 74 DLBCLs were subject to next-generation sequencing targeting 475 genes. The concordance of genetic aberrations in ctDNA and paired tissues was investigated, followed by elevating ctDNA-based mutational landscapes and the correlation between ctDNA dynamics and radiological response/progression. RESULTS: ctDNA exhibited high concordance with tissue samples in cHL (78%), PMBCL (84%), and DLBCL (78%). In cHL, more unique mutations were detected in ctDNA than in tissue biopsies (P < 0.01), with higher variant allele frequencies (P < 0.01). Distinct genomic features in cHL, PMBCL, and DLBCL, including STAT6, SOCS1, BTG2, and PIM1 alterations, could be captured by ctDNA alone. Prevalent PD-L1/PD-L2 amplifications were associated with more concomitant alterations in PMBCL (P < 0.01). Moreover, ctDNA fluctuation could reflect treatment responses and indicate relapse before imaging diagnosis. CONCLUSIONS: Lymphoma genomic profiling by ctDNA was concordant with that by tumor tissues. ctDNA might also be applied in lymphoma surveillance.

15.
Amino Acids ; 56(1): 15, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351332

ABSTRACT

The advance of high-throughput sequencing enhances the discovery of short ORFs embedded in long non-coding RNAs (lncRNAs). Here, we uncovered the production and biological activity of lncRNA-hidden polypeptides in lung adenocarcinoma (LUAD). In the present study, bioinformatics was used to screen the lncRNA-hidden polypeptides in LUAD. Analysis of protein expression was done by western blot or immunofluorescence assay. The functions of the polypeptide were determined by detecting its effects on cell viability, proliferation, migration, invasion, and pemetrexed (PEM) sensitivity. The protein interactors of the polypeptide were analyzed by mass spectrometry after Co-immunoprecipitation (Co-IP) assay. The results showed that the lncRNA LINC00954 was confirmed to encode a novel polypeptide LINC00954-ORF. The polypeptide had tumor-suppressor features in A549 cells by repressing cell growth, motility and invasion. Moreover, the polypeptide enhanced PEM sensitivity and suppressed growth in A549/PEM cells. The protein interactors of this polypeptide had close correlations with RNA processing, amide metabolic process, translation, RNA binding, RNA transport, and DNA replication. As a conclusion, the LINC00954-ORF polypeptide embedded in lncRNA LINC00954 possesses tumor-suppressor features in A549 and PEM-resistant A549 cells and sensitizes PEM-resistant A549 cells to PEM, providing evidence that the LINC00954-ORF polypeptide is a potential anti-cancer agent in LUAD.


Subject(s)
Adenocarcinoma , Lung Neoplasms , RNA, Long Noncoding , Humans , Pemetrexed/pharmacology , Pemetrexed/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , A549 Cells , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Phenotype , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Peptides/metabolism , Gene Expression Regulation, Neoplastic
16.
Langmuir ; 40(32): 16722-16730, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093056

ABSTRACT

Cervical cancer is among the most common malignant tumors in women. The development of rapid screening techniques plays an important role in early screening for cancer treatment. We have developed an HPV screening method, which effectively combines the high-efficiency nucleic acid enrichment of chitosan-modified filter paper and the rapid visual detectability of colorimetric LAMP, along with the enhancement of the tolerance ability of the pH-sensitive LAMP reagent to acidic original samples, making the detection of HPV 16/18 easy to carry out and reliable, which is helpful for the epidemiological prevention and control strategies of HPV-induced cancer. This technique can simultaneously exhibit the "in situ amplification" capability of chitosan-modified filter paper and the nontemperature cycle dependence of visual LAMP detection. Therefore, DNA extraction and amplification can be performed efficiently and quickly within a single reaction where all DNA is concentrated in the QF paper disc. By embedding amino-modified filter paper into the plastic chip, a simple and reliable disposable chip was prepared for rapid HPV16 and HPV18 detection from clinical endometrial samples, and the results were 100% consistent with clinical diagnosis. More importantly, even after the sample was diluted 100-fold, HPV16/18-infected cells could be accurately identified, showing the advantages of the system in early cancer screening. Moreover, for endometrial samples containing plenty of cells, the filter paper could be used to enrich cells by filtration, preventing the acidic fluid from impacting pH-induced colorimetric LAMP detection and realizing direct amplification for HPV identification without nucleic acid extraction. This easy-to-operate system that can analyze a wide range of samples will be suitable for routine on-site HPV screening, dramatically extending the applications and utility for rapid, near-patient nucleic acid testing.


Subject(s)
Colorimetry , Human papillomavirus 16 , Human papillomavirus 18 , Nucleic Acid Amplification Techniques , Paper , Humans , Colorimetry/methods , Human papillomavirus 18/genetics , Human papillomavirus 18/isolation & purification , Human papillomavirus 16/genetics , Human papillomavirus 16/isolation & purification , Nucleic Acid Amplification Techniques/methods , Female , DNA, Viral/analysis , DNA, Viral/genetics , Chitosan/chemistry , Human Papillomavirus Viruses
17.
Biomacromolecules ; 25(4): 2462-2475, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38533630

ABSTRACT

With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What's particularly interesting is that the addition of Ca2+ increases the hydrogel's extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and ß-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.


Subject(s)
Brain Injuries, Traumatic , Chitosan , Hemostatics , Humans , Hemostatics/pharmacology , Hydrogels/pharmacology , Brain Injuries, Traumatic/drug therapy , Brain , Alginates/pharmacology , Anti-Bacterial Agents
18.
Stat Med ; 43(9): 1688-1707, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38373827

ABSTRACT

As one of the most commonly used data types, methods in testing or designing a trial for binary endpoints from two independent populations are still being developed until recently. However, the power and the minimum required sample size comparisons between different tests may not be valid if their type I errors are not controlled at the same level. In this article, we unify all related testing procedures into a decision framework, including both frequentist and Bayesian methods. Sufficient conditions of the type I error attained at the boundary of hypotheses are derived, which help reduce the magnitude of the exact calculations and lay out a foundation for developing computational algorithms to correctly specify the actual type I error. The efficient algorithms are thus proposed to calculate the cutoff value in a deterministic decision rule and the probability value in a randomized decision rule, such that the actual type I error is under but closest to, or equal to, the intended level, respectively. The algorithm may also be used to calculate the sample size to achieve the prespecified type I error and power. The usefulness of the proposed methodology is further demonstrated in the power calculation for designing superiority and noninferiority trials.


Subject(s)
Algorithms , Research Design , Humans , Bayes Theorem , Sample Size , Probability
19.
Inorg Chem ; 63(20): 9288-9296, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38724469

ABSTRACT

A novel 3D europium-based cationic framework (Eu-CMOF) has been constructed solvothermally by employing a viologen derivative as an organic functional building unit. Notably, Eu-CMOF demonstrates its capability as a proficient aqueous-phase ion-exchange host, facilitating the remarkable rapid chromatographic column separation of new coccine and malachite green (NC3-/MG+), as well as new coccine and methylene blue (NC3-/MLB+), in mere 2 to 4 min. Adsorption thermodynamics and kinetics of anionic dyes demonstrate that Eu-CMOF exhibits a higher adsorption capacity for NC3-, as evaluated by the Langmuir model, reaching a value of 173 mg·g-1. The pseudo-second-order rate constant is determined to be 3.84 × 10-3 mg-1·g·min-1. Additionally, Eu-CMOF displays reversible photochromic and amine- and ammonia-induced vapochromic behaviors. Further mechanistic studies reveal that these chromic behaviors are primarily attributed to the generation of free viologen radical stimulated by Xe-light or electron-rich amine/ammonia. This research contributes to the development of advanced materials with applications in rapid chromatographic separation and stimuli-responsive chromic properties, showcasing the potential of Eu-CMOF as a versatile platform for practical applications.

20.
Fish Shellfish Immunol ; 145: 109355, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168634

ABSTRACT

The scavenger receptor class B family proteins (SRB) are multiligand membrane receptor proteins. Herein, a novel SRB homolog (Pt-SRB2) was identified in Portunus trituberculatus. The open reading frame of Pt-SRB2 was predicted to encode 520 amino acid residues comprising a typical CD36 domain. Phylogenetic analysis showed that Pt-SRB2 distinctly clustered with the SRB homologs of most crustaceans and Drosophila but was separate from all vertebrate CD36/SRB. Semi-quantitative and Real-time quantitative PCR revealed that the abundance of Pt-SRB2 transcripts was the highest in hepatopancreas than in other tested tissues. Overexpressed Pt-SRB2 was distributed primarily in the cell membrane and cytoplasm of HEK293T or Drosophila Schneider 2 cells. In crab hemocytes, Pt-SRB2 was distributed primarily in the cell membrane by immunofluorescence staining. In addition, the immunofluorescence staining showed that green fluorescence signals were mainly located in the inner lumen membrane of the hepatopancreatic tubules. Moreover, solid-phase enzyme-linked immunosorbent assay revealed that rPt-SRB2-L exhibited relative high affinity with lipopolysaccharides, and relative moderate binding affinity with lipoteichoic acid or peptidoglycan. Of note, rPt-SRB2-L showed high binding affinity with eicosapentaenoic acid among a series of long-chain polyunsaturated fatty acids. Taken together, this study provided valuable data for understanding the functions of the crab CD36/SRB.


Subject(s)
Brachyura , CD36 Antigens , Humans , Animals , CD36 Antigens/genetics , Brachyura/genetics , Amino Acid Sequence , Base Sequence , Phylogeny , HEK293 Cells , Drosophila/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL