Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 484
Filter
Add more filters

Publication year range
1.
Annu Rev Genet ; 53: 417-444, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31537103

ABSTRACT

Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.


Subject(s)
Cryptococcus/physiology , Cryptococcus/pathogenicity , Genes, Mating Type, Fungal , Reproduction/physiology , Biological Evolution , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genetics, Population , Host-Pathogen Interactions , Humans , Spores, Fungal/pathogenicity , Spores, Fungal/physiology
2.
PLoS Biol ; 22(6): e3002682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843310

ABSTRACT

In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.


Subject(s)
Chromosomes, Fungal , Cryptococcus , Evolution, Molecular , Genome, Fungal , Genomics , Karyotype , Cryptococcus/genetics , Cryptococcus/pathogenicity , Cryptococcus/classification , Chromosomes, Fungal/genetics , Genomics/methods , Phylogeny , Synteny , Centromere/genetics , Cryptococcosis/microbiology , Humans
3.
Proc Natl Acad Sci U S A ; 121(7): e2313789121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38335257

ABSTRACT

Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.


Subject(s)
Chiroptera , Filoviridae , Animals , Phylogeny , China , Mammals
4.
Proc Natl Acad Sci U S A ; 120(10): e2219120120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36867686

ABSTRACT

Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.


Subject(s)
Eukaryota , Eukaryotic Cells , Animals , Female , Male , Cell Communication , Exercise , Reproduction
5.
Proc Natl Acad Sci U S A ; 120(13): e2218819120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943875

ABSTRACT

Certain ciliary transmembrane and membrane-tethered signaling proteins migrate from the ciliary tip to base via retrograde intraflagellar transport (IFT), essential for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. During this process, the BBSome functions as an adaptor between retrograde IFT trains and these signaling protein cargoes. The Arf-like 13 (ARL13) small GTPase resembles ARL6/BBS3 in facilitating these signaling cargoes to couple with the BBSome at the ciliary tip prior to loading onto retrograde IFT trains for transporting towards the ciliary base, while the molecular basis for how this intricate coupling event happens remains elusive. Here, we report that Chlamydomonas ARL13 only in a GTP-bound form (ARL13GTP) anchors to the membrane for diffusing into cilia. Upon entering cilia, ARL13 undergoes GTPase cycle for shuttling between the ciliary membrane (ARL13GTP) and matrix (ARL13GDP). To achieve this goal, the ciliary membrane-anchored BBS3GTP binds the ciliary matrix-residing ARL13GDP to activate the latter as an ARL13 guanine nucleotide exchange factor. At the ciliary tip, ARL13GTP recruits the ciliary matrix-residing and post-remodeled BBSome as an ARL13 effector to anchor to the ciliary membrane. This makes the BBSome spatiotemporally become available for the ciliary membrane-tethered phospholipase D (PLD) to couple with. Afterward, ARL13GTP hydrolyzes GTP for releasing the PLD-laden BBSome to load onto retrograde IFT trains. According to this model, hedgehog signaling defects associated with ARL13b and BBS3 mutations in humans could be satisfactorily explained, providing us a mechanistic understanding behind BBSome-cargo coupling required for proper ciliary signaling.


Subject(s)
Bardet-Biedl Syndrome , Cilia , Humans , Cilia/metabolism , Protein Transport/genetics , Bardet-Biedl Syndrome/genetics , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Guanosine Triphosphate/metabolism , Flagella/metabolism
6.
PLoS Pathog ; 19(11): e1011763, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37956179

ABSTRACT

The "Amoeboid Predator-Fungal Animal Virulence Hypothesis" posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.


Subject(s)
Amoeba , Cryptococcosis , Cryptococcus neoformans , Animals , Humans , Mice , Amoeba/microbiology , Metagenomics , Predatory Behavior , Cryptococcus neoformans/genetics , Cryptococcosis/genetics , Cryptococcosis/microbiology
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169080

ABSTRACT

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Subject(s)
Cryptococcosis/genetics , Cryptococcus/genetics , Epistasis, Genetic/genetics , Biological Evolution , Cryptococcus/metabolism , Cryptococcus/pathogenicity , Fungal Proteins/genetics , Genes, Mating Type, Fungal/genetics , Hyphae/growth & development , Morphogenesis , Phenotype , Quantitative Trait Loci/genetics , Reproduction/genetics , Reproduction, Asexual
8.
Small ; : e2404573, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279611

ABSTRACT

Achieving a narrow emission bandwidth is long pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI3 halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D  [PbI6]4- octahedron layer number (n) are demonstrated. A perovskite core-PbSO4 shell structure is designed to prevent aggregation and fusion between NPLs, enabling consistent thickness and quantum confinement strength for each NPL. Consequently, exact n = 4 CsPbI3 NPLs are demonstrated, exhibiting emission peaks around 630 nm, with very narrow spectral bandwidths of <24 nm and high absolute photoluminescence quantum yields up to 85%. The emission of n = 4 NPLs falls exactly within the pure-red region, closely aligning with the International Telecommunication Union Recommendation BT.2020  standard. Measurements suggest predominant stability and color homogeneity compared to traditional red-emitting CsPbIxBr3- x nanocrystals. Finally, proof-of-concept pure-red emissive light-emitting diodes (LEDs) are demonstrated by integrating n = 4 CsPbI3 NPLs films with a blue LED chip, showing an excellent external quantum efficiency of 18.3% and high brightness exceeding 3 × 106 nits. Stringent requirements for future display technologies, are satisfied based on the high color purity, stability, and brightness of CsPbI3 NPLs.

9.
New Phytol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351644

ABSTRACT

Rice grains typically contain relatively high levels of toxic arsenic (As) but low levels of essential micronutrients. Biofortification of essential micronutrients while decreasing As accumulation in rice would benefit human nutrition and health. We generated transgenic rice expressing a gain-of-function mutant allele astol1 driven by the OsGPX1 promoter. astol1 encodes a plastid-localized O-acetylserine (thiol) lyase (OAS-TL) with Ser189Asn substitution (OsASTOL1S189N), which enhances cysteine biosynthesis by forming an indissociable cysteine synthase complex with its partner serine acetyltransferase (SAT). The effects on growth, As tolerance, and nutrient and As accumulation in rice grain were evaluated in hydroponic, pot and field experiments. The expression of OsASTOL1S189N in pOsGPX1::astol1 transgenic lines enhanced SAT activity, sulphate uptake, biosynthesis of cysteine, glutathione, phytochelatins and nicotianamine, and enhanced tolerance to As. The expression of OsASTOL1S189N decreased As accumulation while increased the accumulation of multiple macronutrients (especially sulphur, nitrogen and potassium) and micronutrients (especially zinc and selenium) in rice grain in a pot experiment and two field experiments, and had little effect on plant growth and grain yield. Our study provides a new strategy to genetically engineer rice to biofortify multiple essential nutrients, reducing As accumulation in rice grain and enhancing As tolerance simultaneously.

10.
BMC Cancer ; 24(1): 967, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112947

ABSTRACT

BACKGROUND: This study aimed to evaluate the effectiveness and safety of recombinant human endostatin (Rh-endostatin) plus programmed cell death 1 (PD-1) inhibitors and chemotherapy as first-line treatment for advanced or metastatic non-small cell lung cancer (NSCLC) in a real-world setting. METHODS: This was a retrospective study on patients with EGFR/ALK-negative, advanced or metastatic NSCLC. Patients received Rh-endostatin plus PD-1 inhibitors and chemotherapy every three weeks for 4 to 6 cycles. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety. RESULTS: A total of 68 patients were included in this retrospective analysis. As of data cutoff (December 13, 2022), the median follow-up of 21.4 months (interquartile range [IQR], 8.3-44.4 months). The median PFS and OS was 22.0 (95% confidence interval [CI]: 16.6-27.4) and 31.0 months (95% CI: 23.4-not evaluable [NE]), respectively. The ORR was 72.06% (95% CI: 59.85-82.27%), and DCR was 95.59% (95% CI: 87.64-99.08%). Patients with stage IIIB/IIIC NSCLC had significantly longer median PFS (23.4 vs. 13.2 months), longer median OS (not reached vs. 18.0 months), and higher ORR (89.2% vs. 51.6%) than those with stage IV NSCLC (all p ≤ 0.001). The ORR was higher in patients with high PD-L1 expression (tumor proportion score [TPS] ≥ 50%) than in those with low PD-L1 expression or positive PD-L1 expression (75% vs. 50%, p = 0.025). All patients experienced treatment-related adverse events (TRAEs), and ≥ grade 3 TRAEs occurred in 16 (23.53%) patients. CONCLUSIONS: Rh-endostatin combined with PD-1 inhibitors plus chemotherapy as first-line treatment yielded favorable effectiveness with a manageable profile in patients with advanced or metastatic NSCLC, representing a promising treatment modality.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Endostatins , Lung Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Endostatins/administration & dosage , Endostatins/adverse effects , Endostatins/therapeutic use , ErbB Receptors/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Progression-Free Survival , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Retrospective Studies , Treatment Outcome
11.
J Magn Reson Imaging ; 60(5): 1892-1901, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38263789

ABSTRACT

BACKGROUND: Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE: This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE: Retrospective. POPULATION: 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE: Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT: Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING: Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS: Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION: Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Postoperative Complications , Pyramidal Tracts , Humans , Male , Glioma/diagnostic imaging , Glioma/surgery , Female , Adult , Magnetic Resonance Imaging/methods , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Pyramidal Tracts/diagnostic imaging , Middle Aged , Postoperative Complications/diagnostic imaging
12.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150062

ABSTRACT

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Subject(s)
Brain Neoplasms , Glioma , Humans , DNA Methylation , Glioma/diagnostic imaging , Glioma/genetics , Glioma/drug therapy , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/genetics , DNA Modification Methylases/genetics , Promoter Regions, Genetic , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Suppressor Proteins/genetics
13.
Environ Sci Technol ; 58(4): 1976-1985, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38232111

ABSTRACT

Rice is a dominant source of inorganic arsenic (As) exposure for populations consuming rice as a staple food. Decreasing As accumulation in rice grain is important for improving food safety. Arsenite [As(III)], the main form of As in paddy soil porewater, is taken up inadvertently by OsLsi1 and OsLsi2, the two key transporters for silicon (Si) uptake in rice roots. Here, we investigated whether editing OsLsi1 or OsLsi2 can decrease As accumulation in rice grain without compromising grain yield. We used the CRISPR-Cas9 technology to edit the promoter region of OsLsi1 and the C-terminal coding sequence of OsLsi1 and OsLsi2, and we generated a total of 27 mutants. Uptake and accumulation of Si and As were evaluated in both short-term hydroponic experiments and in a paddy field. Deletion of 1.2-2 kb of the OsLsi1 promoter suppressed OsLsi1 expression in roots and Si uptake markedly and did not affect As(III) uptake or grain As concentration. Some of the OsLsi1 and OsLsi2 coding sequence mutants showed large decreases in the uptake of Si and As(III) as well as large decreases in Si accumulation in rice husks. However, only OsLsi2 mutants showed significant decreases (by up to 63%) in the grain total As concentration. Editing OsLsi2 mainly affected the accumulation of inorganic As in rice grain with little effect on the accumulation of dimethylarsenate (DMA). Grain yields of the OsLsi2 mutants were comparable to those of the wild type. Editing OsLsi2 provides a promising way to reduce As accumulation in rice grain without compromising the grain yield.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Silicon/metabolism , Oryza/genetics , Membrane Transport Proteins , Biological Transport , Soil
14.
Environ Res ; 259: 119537, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38960362

ABSTRACT

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.


Subject(s)
Charcoal , Humic Substances , Methane , Charcoal/chemistry , Charcoal/pharmacology , Anaerobiosis , Methane/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Bioreactors
15.
PLoS Genet ; 17(11): e1009935, 2021 11.
Article in English | MEDLINE | ID: mdl-34843473

ABSTRACT

Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications.


Subject(s)
Cryptococcus neoformans/genetics , Cryptococcus neoformans/physiology , Genes, Fungal , Genes, Reporter , Genes, cdc , Meiosis , Mitosis , Ploidies , Reproduction
16.
PLoS Genet ; 17(1): e1009313, 2021 01.
Article in English | MEDLINE | ID: mdl-33493169

ABSTRACT

Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.


Subject(s)
Cryptococcosis/genetics , Cryptococcus neoformans/genetics , Epistasis, Genetic/genetics , Genetic Pleiotropy/genetics , Chromosome Mapping , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Drug Resistance, Fungal/genetics , Genotype , Humans , Quantitative Trait Loci/genetics , Signal Transduction/genetics , Virulence/genetics
17.
PLoS Genet ; 17(1): e1008871, 2021 01.
Article in English | MEDLINE | ID: mdl-33465111

ABSTRACT

Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species.


Subject(s)
Cryptococcus neoformans/genetics , Hybridization, Genetic/genetics , Meiosis/genetics , Reproductive Isolation , Crosses, Genetic , Cryptococcus neoformans/physiology , Genome, Fungal/genetics , Homologous Recombination/genetics , Humans , MutS Homolog 2 Protein/genetics , Species Specificity
18.
J Appl Clin Med Phys ; 25(7): e14325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467039

ABSTRACT

PURPOSE: The picket fence (PF) test is highly recommended for multi-leaf collimator (MLC) quality assurance. However, since the electronic portal imaging device (EPID) on the Elekta Unity only covers a small area, it is not feasible to perform the PF test for the entire MLC. Here, we propose a technique for the PF test by stitching two double-exposed films. METHODS: Two EBT3 films were used to encompass the entire MLC, with each one covering one half of the area. Two fields were employed to apply double exposure: a PF pattern consisting of 11 2 mm wide pickets and a 2.84 cm x 22 cm open field. The edges of the open field defined by the diaphragms were used to correct film rotation as well as align them horizontally. The PF pattern was also measured with the EPID where the pickets were used to align the films vertically. Individual leaf positions were detected on the merged film for quantitative analysis. Various MLC positioning errors were introduced to evaluate the technique's sensitivity. RESULTS: The merged films covered 72 leaf pairs properly (four leaf pairs on both sides were outside the treatment couch). With the EPID, the leaf positioning accuracy was -0.02 ± 0.07 mm (maximum: 0.29 mm) and the picket width variation was 0.00 ± 0.03 mm (maximum: 0.11 mm); with the films, the position accuracy and width variation were -0.03 ± 0.13 mm (maximum: 0.80 mm) and 0.00 ± 0.13 mm (maximum: 0.74 mm), respectively. The EPID was able to detect errors of 0.5 mm or above with submillimeter accuracy; the films were only able to detect errors > 1.0 mm. CONCLUSION: We developed a quantitative technique for the PF test on the Elekta Unity. The merged films covered nearly the entire MLC leaf banks. The technique exhibited clinically acceptable accuracy and sensitivity to MLC positioning errors.


Subject(s)
Particle Accelerators , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/methods , Particle Accelerators/instrumentation , Magnetic Resonance Imaging/methods , Film Dosimetry/methods , Film Dosimetry/instrumentation , Phantoms, Imaging , Neoplasms/radiotherapy
19.
J Biol Chem ; 298(4): 101749, 2022 04.
Article in English | MEDLINE | ID: mdl-35189141

ABSTRACT

The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain-containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD-Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3-STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Sulfur , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon-Sulfur Lyases , Cysteine/metabolism , Cytosol/metabolism , Protein Domains , Sulfur/metabolism , Sulfurtransferases/metabolism , Thiosulfate Sulfurtransferase/genetics , Thiosulfate Sulfurtransferase/metabolism
20.
J Am Chem Soc ; 145(11): 6112-6122, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36883963

ABSTRACT

Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.

SELECTION OF CITATIONS
SEARCH DETAIL