Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.004
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795413

ABSTRACT

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Subject(s)
RNA, Messenger/genetics , RNA, Viral/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , HeLa Cells , Humans , Immunogenicity, Vaccine , Injections, Intramuscular , Macaca fascicularis , Male , Mice , Mice, Inbred ICR , Nanoparticles/chemistry , RNA, Messenger/metabolism , RNA, Viral/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Th1 Cells/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
Nature ; 621(7977): 75-81, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37673990

ABSTRACT

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

3.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869216

ABSTRACT

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

4.
J Am Chem Soc ; 146(7): 4557-4569, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345667

ABSTRACT

Intelligent utilization of the anionic redox reaction (ARR) in Li-rich cathodes is an advanced strategy for the practical implementation of next-generation high-energy-density rechargeable batteries. However, due to the intrinsic complexity of ARR (e.g., nucleophilic attacks), the instability of the cathode-electrolyte interphase (CEI) on a Li-rich cathode presents more challenges than typical high-voltage cathodes. Here, we manipulate CEI interfacial engineering by introducing an all-fluorinated electrolyte and exploiting its interaction with the nucleophilic attack to construct a gradient CEI containing a pair of fluorinated layers on a Li-rich cathode, delivering enhanced interfacial stability. Negative/detrimental nucleophilic electrolyte decomposition has been efficiently evolved to further reinforce CEI fabrication, resulting in the construction of LiF-based indurated outer shield and fluorinated polymer-based flexible inner sheaths. Gradient interphase engineering dramatically improved the capacity retention of the Li-rich cathode from 43 to 71% after 800 cycles and achieved superior cycling stability in anode-free and pouch-type full cells (98.8% capacity retention, 220 cycles), respectively.

5.
BMC Plant Biol ; 24(1): 540, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872080

ABSTRACT

BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.


Subject(s)
Dioscorea , Diosgenin , Genome-Wide Association Study , Plant Tubers , Polymorphism, Single Nucleotide , Diosgenin/metabolism , Dioscorea/genetics , Dioscorea/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Genetic Variation
6.
Plant Cell Environ ; 47(1): 246-258, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37830787

ABSTRACT

Plants can sense the photoperiod to flower at the right time. As a sensitive short-day crop, soybean (Glycine max) flowering varies greatly depending on photoperiods, affecting yields. Adaptive changes in soybeans rely on variable genetic loci such as E1 and FLOWERING LOCUS T orthologs. However, the precise coordination and control of these molecular components remain largely unknown. In this study, we demonstrate that GmFT5b functions as a crucial factor for soybean flowering. Overexpressed or mutated GmFT5b resulted in significantly early or later flowering, altering expression profiles for several downstream flowering-related genes under a long-day photoperiod. GmFT5b interacts with the transcription factor GmFDL15, suggesting transcriptional tuning of flowering time regulatory genes via the GmFT5b/GmFDL15 complex. Notably, GmFT5a partially compensated for GmFT5b function, as ft5a ft5b double mutants exhibited an enhanced late-flowering phenotype. Association mapping revealed that GmFT5b was associated with flowering time, maturity, and geographical distribution of soybean accessions, all associated with the E1 locus. Therefore, GmFT5b is a valuable target for enhancing regional adaptability. Natural variants or multiple mutants in this region can be utilized to generate optimized soybean varieties with precise flowering times.


Subject(s)
Glycine max , Photoperiod , Glycine max/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Loci , Flowers/physiology , Gene Expression Regulation, Plant
7.
Plant Cell Environ ; 47(5): 1656-1667, 2024 May.
Article in English | MEDLINE | ID: mdl-38282250

ABSTRACT

Soybean (Glycine max) is a typical short-day plant, but has been widely cultivated in high-latitude long-day (LD) regions because of the development of early-maturing genotypes which are photoperiod-insensitive. However, some early-maturing varieties exhibit significant responses to maturity under different daylengths but not for flowering, depicting an evident photoperiodic after-effect, a poorly understood mechanism. In this study, we investigated the postflowering responses of 11 early-maturing soybean varieties to various preflowering photoperiodic treatments. We confirmed that preflowering SD conditions greatly promoted maturity and other postflowering developmental stages. Soybean homologs of FLOWERING LOCUS T (FT), including GmFT2a, GmFT3a, GmFT3b and GmFT5a, were highly accumulated in leaves under preflowering SD treatment. More importantly, they maintained a high expression level after flowering even under LD conditions. E1 RNAi and GmFT2a overexpression lines showed extremely early maturity regardless of preflowering SD and LD treatments due to constitutively high levels of floral-promoting GmFT homolog expression throughout their life cycle. Collectively, our data indicate that high and stable expression of floral-promoting GmFT homologs play key roles in the maintenance of photoperiodic induction to promote postflowering reproductive development, which confers early-maturing varieties with appropriate vegetative growth and shortened reproductive growth periods for adaptation to high latitudes.


Subject(s)
Glycine max , Photoperiod , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/physiology , Circadian Rhythm , Gene Expression Regulation, Plant
8.
Allergy ; 79(5): 1230-1241, 2024 May.
Article in English | MEDLINE | ID: mdl-38403941

ABSTRACT

BACKGROUND: Identifying predictive biomarkers for allergen immunotherapy response is crucial for enhancing clinical efficacy. This study aims to identify such biomarkers in patients with allergic rhinitis (AR) undergoing subcutaneous immunotherapy (SCIT) for house dust mite allergy. METHODS: The Tongji (discovery) cohort comprised 72 AR patients who completed 1-year SCIT follow-up. Circulating T and B cell subsets were characterized using multiplexed flow cytometry before SCIT. Serum immunoglobulin levels and combined symptom and medication score (CSMS) were assessed before and after 12-month SCIT. Responders, exhibiting ≥30% CSMS improvement, were identified. The random forest algorithm and logistic regression analysis were used to select biomarkers and establish predictive models for SCIT efficacy in the Tongji cohort, which was validated in another Wisco cohort with 43 AR patients. RESULTS: Positive SCIT response correlated with higher baseline CSMS, allergen-specific IgE (sIgE)/total IgE (tIgE) ratio, and frequencies of Type 2 helper T cells, Type 2 follicular helper T (TFH2) cells, and CD23+ nonswitched memory B (BNSM) and switched memory B (BSM) cells, as well as lower follicular regulatory T (TFR) cell frequency and TFR/TFH2 cell ratio. The random forest algorithm identified sIgE/tIgE ratio, TFR/TFH2 cell ratio, and BNSM frequency as the key biomarkers discriminating responders from nonresponders in the Tongji cohort. Logistic regression analysis confirmed the predictive value of a combination model, including sIgE/tIgE ratio, TFR/TFH2 cell ratio, and CD23+ BSM frequency (AUC = 0.899 in Tongji; validated AUC = 0.893 in Wisco). CONCLUSIONS: A T- and B-cell signature combination efficiently identified SCIT responders before treatment, enabling personalized approaches for AR patients.


Subject(s)
Biomarkers , Desensitization, Immunologic , Pyroglyphidae , Rhinitis, Allergic , Humans , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Male , Desensitization, Immunologic/methods , Animals , Female , Adult , Pyroglyphidae/immunology , Treatment Outcome , Immunoglobulin E/blood , Immunoglobulin E/immunology , Middle Aged , Young Adult , Allergens/immunology , Allergens/administration & dosage , Antigens, Dermatophagoides/immunology , Injections, Subcutaneous , Adolescent , Prognosis
9.
Int J Behav Nutr Phys Act ; 21(1): 17, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355565

ABSTRACT

BACKGROUND: How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE: To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS: Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS: During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS: Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.


Subject(s)
Parkinson Disease , Humans , Cohort Studies , Parkinson Disease/epidemiology , Sleep , Exercise , Risk Reduction Behavior , Risk Factors
10.
Stereotact Funct Neurosurg ; 102(1): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-37995674

ABSTRACT

INTRODUCTION: This study aimed to assess the impact of gamma knife radiosurgery on brainstem cavernous malformations (CMs). METHODS: A total of 85 patients (35 females; median age 41.0 years) who underwent gamma knife radiosurgery for brainstem CMs at our institute between 2006 and 2015 were enrolled in a prospective clinical observation trial. Risk factors for hemorrhagic outcomes were evaluated, and outcomes were compared across different margin doses. RESULTS: The pre-radiosurgery annual hemorrhage rate (AHR) was 32.3% (44 hemorrhages during 136.2 patient-years). The median planning target volume was 1.292 cc. The median margin and maximum doses were 15.0 and 29.2 Gy, respectively, with a median isodose line of 50.0%. The post-radiosurgery AHR was 2.7% (21 hemorrhages during 769.9 patient-years), with a rate of 5.5% within the first 2 years and 2.0% thereafter. The post-radiosurgery AHR for patients with margin doses of ≤13.0 Gy (n = 15), 14.0-15.0 Gy (n = 50), and ≥16.0 Gy (n = 20) was 5.4, 2.7, and 0.6%, respectively. Correspondingly, transient adverse radiation effects were observed in 6.7 (1/15), 10.0 (5/50), and 30.0% (6/20) of cases, respectively. An increased margin dose per 1 Gy (hazard ratio: 0.530, 95% CI: 0.341-0.826, p = 0.005) was identified as an independent protective factor against post-radiosurgery hemorrhage. Margin doses of ≥16.0 Gy were associated with improved hemorrhagic outcomes (hazard ratio: 0.343, 95% confidence interval [CI]: 0.157-0.749, p = 0.007), but an increased risk of adverse radiation effects (odds ratio: 3.006, 95% CI: 1.041-8.677, p = 0.042). CONCLUSION: The AHR of brainstem CMs decreased following radiosurgery, and our study revealed a significant dose-response relationship. Margin doses of 14-15 Gy were recommended. Further studies are required to validate our findings.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Intracranial Arteriovenous Malformations , Radiosurgery , Adult , Female , Humans , Brain Stem/surgery , Follow-Up Studies , Hemangioma, Cavernous, Central Nervous System/radiotherapy , Hemangioma, Cavernous, Central Nervous System/surgery , Hemangioma, Cavernous, Central Nervous System/complications , Hemorrhage/complications , Hemorrhage/surgery , Prospective Studies , Radiosurgery/adverse effects , Treatment Outcome , Male
11.
Nano Lett ; 23(17): 8194-8202, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37624651

ABSTRACT

Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.43 mA/cm2 toward EOR, which is 13.3 times that of Pt/C, as well as remarkable stability. Electrochemical in situ Fourier transform infrared spectroscopy indicates that long-range Rh-O-Pt dual sites can increase the selectivity of C1 products and suppress the generation of a CO intermediate. Theoretical calculations further disclose that redistribution of the surface-localized electron around Rh-O-Pt can promote direct oxidation of -OH, accelerating C-C bond cleavage. This work provides a promising strategy for designing oxygen-bridged long-range dual sites to tune the activity and selectivity of complicated catalytic reactions.

12.
Nano Lett ; 23(14): 6681-6688, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37440609

ABSTRACT

The initial Na loss limits the theoretical specific capacity of cathodes in Na-ion full cell applications, especially for Na-deficient P2-type cathodes. In this study, we propose a presodiation strategy for cathodes to compensate for the initial Na loss in Na-ion full cells, resulting in a higher specific capacity and a higher energy density. By employing an electrochemical presodiation approach, we inject 0.32 excess active Na into P2-type Na0.67Li0.1Fe0.37Mn0.53O2 (NLFMO), aiming to compensate for the initial Na loss in hard carbon (HC) and the inherent Na deficiency of NLFMO. The structure of the NLFMO cathode converts from P2 to P'2 upon active Na injection, without affecting subsequent cycles. As a result, the HC||NLFMOpreNa full cell exhibits a specific capacity of 125 mAh/g, surpassing the value of 61 mAh/g of the HC||NLFMO full cell without presodiation due to the injected active Na. Moreover, the presodiation effect can be achieved through other engineering approaches (e.g., Na-metal contact), suggesting the scalability of this methodology.

13.
Nano Lett ; 23(8): 3565-3572, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37026665

ABSTRACT

The prominent problem with graphite anodes in practical applications is the detrimental Li plating, resulting in rapid capacity fade and safety hazards. Herein, secondary gas evolution behavior during the Li-plating process was monitored by online electrochemical mass spectrometry (OEMS), and the onset of local microscale Li plating on the graphite anode was precisely/explicitly detected in situ/operando for early safety warnings. The distribution of irreversible capacity loss (e.g., primary and secondary solid electrolyte interface (SEI), dead Li, etc.) under Li-plating conditions was accurately quantified by titration mass spectroscopy (TMS). Based on OEMS/TMS results, the effect of typical VC/FEC additives was recognized at the level of Li plating. The nature of vinylene carbonate (VC)/fluoroethylene carbonate (FEC) additive modification is to enhance the elasticity of primary and secondary SEI by adjusting organic carbonates and/or LiF components, leading to less "dead Li" capacity loss. Though VC-containing electrolyte greatly suppresses the H2/C2H4 (flammable/explosive) evolution during Li plating, more H2 is released from the reductive decomposition of FEC.

14.
Nano Lett ; 23(10): 4167-4175, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37155570

ABSTRACT

Surface patterning is a promising strategy to overcome the trade-off effect of separation membranes. Herein, a bottom-up patterning strategy of locking micron-sized carbon nanotube cages (CNCs) onto a nanofibrous substrate is developed. The strongly enhanced capillary force triggered by the abundant narrow channels in CNCs endows the precisely patterned substrate with excellent wettability and antigravity water transport. Both are crucial for the preloading of cucurbit[n]uril (CB6)-embeded amine solution to form an ultrathin (∼20 nm) polyamide selective layer clinging to CNCs-patterned substrate. The CNCs-patterning and CB6 modification result in a 40.2% increased transmission area, a reduced thickness, and a lowered cross-linking degree of selective layer, leading to a high water permeability of 124.9 L·m-2 h-1 bar-1 and a rejection of 99.9% for Janus Green B (511.07 Da), an order of magnitude higher than that of commercial membranes. The new patterning strategy provides technical and theoretical guidance for designing next-generation dye/salt separation membranes.

15.
Water Sci Technol ; 89(1): 54-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214986

ABSTRACT

The volume capture ratio of annual rainfall (VCRAR) of low-impact development measures is significantly influenced by its operating characteristics, particularly for residential stormwater detention tanks (SWDTs). The multi-objective operation strategy of SWDTs, encompassing toilet flushing (TF), green space irrigation (GSI), combined TF and GSI (TF-GSI), and peak flow reduction (PFR) rate, were compared using a case study in Beijing based on the stormwater management model. The findings indicate that the VCRAR for TF, GSI, and TF-GSI rainwater harvesting targets was 89.05, 77.16, and 91.21%, respectively. The operating scheme and return periods have a significant impact on the PFR rate's effectiveness. When the return period was lower than 10 years, the SWDT does not reach its maximum storage capacity, and the PFR rate was increased with increasing the return period: the PFR rate was 71.47% when the design return period was 10 years. It will also produce the phenomena of water inrush, and the overflow volume will grow rapidly when the SWDT reaches its maximum storage capacity. Hence, the operation of SWDTs may be integrated with real-time control to optimize the VCRAR for rainwater reuse and flood migration, thereby enhancing the volume utilization efficiency of SWDTs.


Subject(s)
Rain , Water Movements , Beijing , Water Supply , Floods
16.
J Tissue Viability ; 33(1): 96-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38155029

ABSTRACT

Burns are a common type of trauma that seriously affect not only the physical health, but also the mental health and quality of life of the patient. Extracorporeal shock wave therapy (ESWT) is an emerging treatment that has been used in clinical treatment. It has many advantages, including safety, non-invasiveness, efficiency, short treatment duration, fewer complications, and relatively low prices. In clinical settings, ESWT has played an important role in the healing process of burns and the prevention of sequelae. This article reviews the history of ESWT, the mechanism of ESWT to promote burn healing, and the application of ESWT in burns. Current status of ESWT treatment for burns as well as future perspectives for research have been summarized and proposed. However, patients with burns cannot be considered recovered when the wounds have healed, we need some new technology to adjust to the challenges of the future.


Subject(s)
Burns , Extracorporeal Shockwave Therapy , Humans , Quality of Life , Wound Healing , Burns/complications , Burns/therapy , Time Factors , Treatment Outcome
17.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38116869

ABSTRACT

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

18.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38441399

ABSTRACT

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

19.
Angew Chem Int Ed Engl ; 63(14): e202317922, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366167

ABSTRACT

Carbon coating layers have been found to improve the catalytic performance of transition metals, which is usually explained as an outcome of electronic synergistic effect. Herein we reveal that the defective graphitic carbon, with a unique interlayer gap of 0.342 nm, can be a highly selective natural molecular sieve. It allows efficient diffusion of hydrogen molecules or radicals both along the in-plane and out-of-plane direction, but sterically hinders the diffusion of molecules with larger kinetic diameter (e.g., CO and O2) along the in-plane direction. As a result, poisonous species lager than 0.342 nm are sieved out, even when their adsorption on the metal is thermodynamically strong; at the same time, the interaction between H2 and the metal is not affected. This natural molecular sieve provides a very chance for constructing robust metal catalysts for hydrogen-relevant processes, which are more tolerant to chemical or electrochemical oxidation or CO-relevant poisoning.

20.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38088222

ABSTRACT

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL