Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.238
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 23(12): 1714-1725, 2022 12.
Article in English | MEDLINE | ID: mdl-36411380

ABSTRACT

Increasing evidence indicates close interaction between immune cells and the brain, revising the traditional view of the immune privilege of the brain. However, the specific mechanisms by which immune cells promote normal neural function are not entirely understood. Mucosal-associated invariant T cells (MAIT cells) are a unique type of innate-like T cell with molecular and functional properties that remain to be better characterized. In the present study, we report that MAIT cells are present in the meninges and express high levels of antioxidant molecules. MAIT cell deficiency in mice results in the accumulation of reactive oxidative species in the meninges, leading to reduced expression of junctional protein and meningeal barrier leakage. The presence of MAIT cells restricts neuroinflammation in the brain and preserves learning and memory. Together, our work reveals a new functional role for MAIT cells in the meninges and suggests that meningeal immune cells can help maintain normal neural function by preserving meningeal barrier homeostasis and integrity.


Subject(s)
Mucosal-Associated Invariant T Cells , Animals , Mice , Brain , Meninges , Cognition , Oxidative Stress
2.
Cell ; 151(5): 951-63, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178118

ABSTRACT

The inactive X chromosome's (Xi) physical territory is microscopically devoid of transcriptional hallmarks and enriched in silencing-associated modifications. How these microscopic signatures relate to specific Xi sequences is unknown. Therefore, we profiled Xi gene expression and chromatin states at high resolution via allele-specific sequencing in mouse trophoblast stem cells. Most notably, X-inactivated transcription start sites harbored distinct epigenetic signatures relative to surrounding Xi DNA. These sites displayed H3-lysine27-trimethylation enrichment and DNaseI hypersensitivity, similar to autosomal Polycomb targets, yet excluded Pol II and other transcriptional hallmarks, similar to nontranscribed genes. CTCF bound X-inactivated and escaping genes, irrespective of measured chromatin boundaries. Escape from X inactivation occurred within, and X inactivation was maintained exterior to, the area encompassed by Xist in cells subject to imprinted and random X inactivation. The data support a model whereby inactivation of specific regulatory elements, rather than a simple chromosome-wide separation from transcription machinery, governs gene silencing over the Xi.


Subject(s)
Gene Silencing , Regulatory Elements, Transcriptional , X Chromosome Inactivation , Animals , CCCTC-Binding Factor , Chromatin/metabolism , Deoxyribonuclease I/metabolism , Histone Code , Long Interspersed Nucleotide Elements , Mice , Polycomb-Group Proteins/metabolism , RNA Polymerase II/metabolism , Repressor Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Trophoblasts/cytology
3.
Mol Cell ; 76(6): 938-952.e5, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31668930

ABSTRACT

High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.


Subject(s)
Bacteriophages/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/metabolism , Neisseria meningitidis/enzymology , Viral Proteins/metabolism , Bacteriophages/genetics , Binding Sites , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/ultrastructure , Catalysis , DNA/genetics , DNA/ultrastructure , Escherichia coli/enzymology , Escherichia coli/genetics , Neisseria meningitidis/genetics , Protein Binding , Protein Domains , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Structure-Activity Relationship , Viral Proteins/genetics , Viral Proteins/ultrastructure
4.
Proc Natl Acad Sci U S A ; 120(34): e2302603120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579161

ABSTRACT

Certain transmembrane and membrane-tethered signaling proteins export from cilia as BBSome cargoes via the outward BBSome transition zone (TZ) diffusion pathway, indispensable for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. Murine Rab-like 2 (Rabl2) GTPase resembles Chlamydomonas Arf-like 3 (ARL3) GTPase in promoting outward TZ passage of the signaling protein cargo-laden BBSome. During this process, ARL3 binds to and recruits the retrograde IFT train-dissociated BBSome as its effector to diffuse through the TZ for ciliary retrieval, while how RABL2 and ARL3 cross talk in this event remains uncertain. Here, we report that Chlamydomonas RABL2 in a GTP-bound form (RABL2GTP) cycles through cilia via IFT as an IFT-B1 cargo, dissociates from retrograde IFT trains at a ciliary region right above the TZ, and converts to RABL2GDP for activating ARL3GDP as an ARL3 guanine nucleotide exchange factor. This confers ARL3GTP to detach from the ciliary membrane and become available for binding and recruiting the phospholipase D (PLD)-laden BBSome, autonomous of retrograde IFT association, to diffuse through the TZ for ciliary retrieval. Afterward, RABL2GDP exits cilia by being bound to the ARL3GTP/BBSome entity as a BBSome cargo. Our data identify ciliary signaling proteins exported from cilia via the RABL2-ARL3 cascade-mediated outward BBSome TZ diffusion pathway. According to this model, hedgehog signaling defect-induced Bardet-Biedl syndrome caused by RABL2 mutations in humans could be well explained in a mutation-specific manner, providing us with a mechanistic understanding behind the outward BBSome TZ passage required for proper ciliary signaling.


Subject(s)
Cilia , Hedgehog Proteins , Humans , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cilia/metabolism , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Protein Transport/genetics , rab GTP-Binding Proteins/metabolism , Chlamydomonas
5.
Proc Natl Acad Sci U S A ; 120(31): e2303675120, 2023 08.
Article in English | MEDLINE | ID: mdl-37494395

ABSTRACT

Anti-CRISPR (Acr) proteins are encoded by phages and other mobile genetic elements and inhibit host CRISPR-Cas immunity using versatile strategies. AcrIIC4 is a broad-spectrum Acr that inhibits the type II-C CRISPR-Cas9 system in several species by an unknown mechanism. Here, we determined a series of structures of Haemophilus parainfluenzae Cas9 (HpaCas9)-sgRNA in complex with AcrIIC4 and/or target DNA, as well as the crystal structure of AcrIIC4 alone. We found that AcrIIC4 resides in the crevice between the REC1 and REC2 domains of HpaCas9, where its extensive interactions restrict the mobility of the REC2 domain and prevent the unwinding of target double-stranded (ds) DNA at the PAM-distal end. Therefore, the full-length guide RNA:target DNA heteroduplex fails to form in the presence of AcrIIC4, preventing Cas9 nuclease activation. Altogether, our structural and biochemical studies illuminate a unique Acr mechanism that allows DNA binding to the Cas9 effector complex but blocks its cleavage by preventing R-loop formation, a key step supporting DNA cleavage by Cas9.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , R-Loop Structures , RNA, Guide, CRISPR-Cas Systems , DNA/metabolism , Bacteriophages/genetics , Gene Editing
6.
EMBO J ; 40(6): e104296, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33459422

ABSTRACT

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA-sequencing reveals that the first-phase controls anti-apoptotic gene expression, while the second drives expression of senescence-associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re-expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF-κB family member p65/RelA, in part mediated by GSK3ß, results in transcriptional silencing of NFKBIA and IKK-independent, constitutive activation of NF-κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF-κB activation with important implications for genotoxic cancer treatment.


Subject(s)
Cellular Senescence/physiology , I-kappa B Kinase/metabolism , NF-KappaB Inhibitor alpha/biosynthesis , Transcription Factor RelA/metabolism , Transcription, Genetic/genetics , Animals , Apoptosis/genetics , Cell Line , Cell Proliferation/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Female , Gene Silencing/physiology , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , NF-KappaB Inhibitor alpha/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism
7.
Lancet ; 403(10432): 1141-1152, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38461841

ABSTRACT

BACKGROUND: Intravitreal aflibercept 8 mg could improve treatment outcomes and provide sustained disease control in patients with neovascular age-related macular degeneration (nAMD), with extended dosing compared with aflibercept 2 mg. METHODS: PULSAR is a phase 3, randomised, three-group, double-masked, non-inferiority, 96-week trial conducted across 223 sites worldwide. Adults with nAMD were randomised 1:1:1 to aflibercept 8 mg every 12 weeks (8q12), aflibercept 8 mg every 16 weeks (8q16), or aflibercept 2 mg every 8 weeks (2q8), following three initial monthly doses in all groups. From week 16, patients in the aflibercept 8 mg groups had their dosing interval shortened if pre-specified dose regimen modification criteria denoting disease activity were met. The primary endpoint was change from baseline in best-corrected visual acuity (BCVA) at week 48. All patients with at least one dose of study treatment were included in the efficacy and safety analyses. This trial is registered with ClinicalTrials.gov (NCT04423718) and is ongoing. FINDINGS: Of 1011 patients randomised to aflibercept 8q12 (n=336), 8q16 (n=338), or 2q8 (n=337) between Aug 11, 2020, and July 30, 2021, 1009 patients received study treatment (aflibercept 8q12 n=335; aflibercept 8q16 n=338; and aflibercept 2q8 n=336). Aflibercept 8q12 and 8q16 showed non-inferior BCVA gains versus aflibercept 2q8 (mean BCVA change from baseline +6·7 [SD 12·6] and +6·2 [11·7] vs +7·6 [12·2] letters). The least squares mean differences between aflibercept 8q12 versus 2q8 and 8q16 versus 2q8, respectively, were -0·97 (95% CI -2·87 to 0·92) and -1·14 (-2·97 to 0·69) letters (non-inferiority margin at 4 letters). The incidence of ocular adverse events in the study eye was similar across groups (aflibercept 8q12 n=129 [39%]; aflibercept 8q16 n=127 [38%]; and aflibercept 2q8 n=130 [39%]). INTERPRETATION: Aflibercept 8 mg showed efficacy and safety with extended dosing intervals, which has the potential to improve the management of patients with nAMD. FUNDING: Bayer AG and Regeneron Pharmaceuticals.


Subject(s)
Angiogenesis Inhibitors , Macular Degeneration , Adult , Humans , Angiogenesis Inhibitors/adverse effects , DEAE-Dextran , Macular Degeneration/drug therapy , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/adverse effects , Treatment Outcome
8.
Lancet ; 403(10432): 1153-1163, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38461843

ABSTRACT

BACKGROUND: A high-dose formulation of intravitreal aflibercept (8 mg) could improve treatment outcomes in diabetic macular oedema (DMO) by requiring fewer injections than the standard comparator, aflibercept 2 mg. We report efficacy and safety results of aflibercept 8 mg versus 2 mg in patients with DMO. METHODS: PHOTON was a randomised, double-masked, non-inferiority, phase 2/3 trial performed at 138 hospitals and specialty retina clinics in seven countries. Eligible patients were adults aged 18 years or older with type 1 or 2 diabetes and centre-involved DMO. Patients were randomly assigned (1:2:1) to intravitreal aflibercept 2 mg every 8 weeks (2q8), aflibercept 8 mg every 12 weeks (8q12), or aflibercept 8 mg every 16 weeks (8q16), following initial monthly dosing. From week 16, dosing intervals for the aflibercept 8 mg groups were shortened if patients met prespecified dose regimen modification criteria denoting disease activity. The primary endpoint was change from baseline in best-corrected visual acuity (BCVA) at week 48 (non-inferiority margin of 4 letters). Efficacy and safety analyses included all randomly assigned patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov (NCT04429503). FINDINGS: Between June 29, 2020, and June 28, 2021, 970 patients were screened for eligibility. After exclusions, 660 patients were enrolled and randomly assigned to receive aflibercept 8q12 (n=329), 8q16 (n=164), or 2q8 (n=167); two patients were randomly assigned in error and did not receive treatment. 658 (99·7%) patients were treated and included in the full analysis set and safety analysis set (8q12 n=328, 8q16 n=163, and 2q8 n=167). Mean patient age was 62·3 years (SD 10·4). 401 (61%) patients were male. 471 (72%) patients were White. Aflibercept 8q12 and 8q16 demonstrated non-inferior BCVA gains to aflibercept 2q8 (BCVA mean change from baseline 8·8 letters [SD 9·0] in the 8q12 group, 7·9 letters [8·4] in the 8q16 group, and 9·2 letters [9·0] in the 2q8 group). The difference in least squares means was -0·57 letters (95% CI -2·26 to 1·13, p value for non-inferiority <0·0001) between 8q12 and 2q8 and -1·44 letters (-3·27 to 0·39, p value for non-inferiority 0·0031) between aflibercept 8q16 and 2q8. Proportions of patients with ocular adverse events in the study eye were similar across groups (8q12 n=104 [32%], 8q16 n=48 [29%], and 2q8 n=46 [28%]). INTERPRETATION: Aflibercept 8 mg demonstrated efficacy and safety with extended dosing intervals and could decrease treatment burden in patients with DMO. FUNDING: Regeneron Pharmaceuticals and Bayer.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Adult , Female , Humans , Male , Angiogenesis Inhibitors , Diabetes Mellitus/drug therapy , Macular Edema/etiology , Macular Edema/chemically induced , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/adverse effects , Treatment Outcome , Middle Aged , Aged
9.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35819065

ABSTRACT

KDM6B-mediated epigenetic modification of the testicular regulator Dmrt1 has previously been identified as the primary switch of the male pathway in a temperature-dependent sex-determination (TSD) system; however, the molecular network of the female pathway has not yet been established. Here, we have functionally characterized for the first time an upstream regulator of the female pathway, the forkhead transcription factor FOXL2, in Trachemys scripta, a turtle species with a TSD system. FOXL2 exhibited temperature-dependent female-specific expression patterns before the onset of gonadal differentiation and was preferentially localized in ovarian somatic cells. Foxl2 responded rapidly to temperature shifts and estrogen. Importantly, forced expression of Foxl2 at the male-producing temperature led to male-to-female sex reversal, as evidenced by the formation of an ovary-like structure, and upregulation of the ovarian regulators Cyp19a1 and R-spondin1. Additionally, knockdown of Foxl2 caused masculinization at the female-producing temperature, which was confirmed by loss of the female phenotype, development of seminiferous tubules, and elevated expression of Dmrt1 and Sox9. Collectively, we demonstrate that Foxl2 expression is necessary and sufficient to drive ovarian determination in T. scripta, suggesting a crucial role of Foxl2 in female sex determination in the TSD system.


Subject(s)
Turtles , Animals , Female , Gene Expression Regulation, Developmental , Gonads/metabolism , Male , Sex Determination Processes/genetics , Sex Differentiation/genetics , Temperature , Turtles/genetics
10.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38579257

ABSTRACT

MOTIVATION: Spatial transcriptomics has greatly contributed to our understanding of spatial and intra-sample heterogeneity, which could be crucial for deciphering the molecular basis of human diseases. Intra-tumor heterogeneity, e.g. may be associated with cancer treatment responses. However, the lack of computational tools for exploiting cross-regional information and the limited spatial resolution of current technologies present major obstacles to elucidating tissue heterogeneity. RESULTS: To address these challenges, we introduce RegionalST, an efficient computational method that enables users to quantify cell type mixture and interactions, identify sub-regions of interest, and perform cross-region cell type-specific differential analysis for the first time. Our simulations and real data applications demonstrate that RegionalST is an efficient tool for visualizing and analyzing diverse spatial transcriptomics data, thereby enabling accurate and flexible exploration of tissue heterogeneity. Overall, RegionalST provides a one-stop destination for researchers seeking to delve deeper into the intricacies of spatial transcriptomics data. AVAILABILITY AND IMPLEMENTATION: The implementation of our method is available as an open-source R/Bioconductor package with a user-friendly manual available at https://bioconductor.org/packages/release/bioc/html/RegionalST.html.


Subject(s)
Gene Expression Profiling , Software , Humans , Gene Expression Profiling/methods
11.
Hum Genomics ; 18(1): 39, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632618

ABSTRACT

Age-related cataract and hearing difficulties are major sensory disorders that often co-exist in the global-wide elderly and have a tangible influence on the quality of life. However, the epidemiologic association between cataract and hearing difficulties remains unexplored, while little is known about whether the two share their genetic etiology. We first investigated the clinical association between cataract and hearing difficulties using the UK Biobank covering 502,543 individuals. Both unmatched analysis (adjusted for confounders) and a matched analysis (one control matched for each patient with cataract according to confounding factors) were undertaken and confirmed that cataract was associated with hearing difficulties (OR, 2.12; 95% CI, 1.98-2.27; OR, 2.03; 95% CI, 1.86-2.23, respectively). Furthermore, we explored and quantified the shared genetic architecture of these two complex sensory disorders at the common variant level using the bivariate causal mixture model (MiXeR) and conditional/conjunctional false discovery rate method based on the largest available genome-wide association studies of cataract (N = 585,243) and hearing difficulties (N = 323,978). Despite detecting only a negligible genetic correlation, we observe polygenic overlap between cataract and hearing difficulties and identify 6 shared loci with mixed directions of effects. Follow-up analysis of the shared loci implicates candidate genes QKI, STK17A, TYR, NSF, and TCF4 likely contribute to the pathophysiology of cataracts and hearing difficulties. In conclusion, this study demonstrates the presence of epidemiologic association between cataract and hearing difficulties and provides new insights into the shared genetic architecture of these two disorders at the common variant level.


Subject(s)
Cataract , Hearing Loss , Aged , Middle Aged , Humans , Genome-Wide Association Study/methods , Quality of Life , Hearing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genetic Loci , Protein Serine-Threonine Kinases , Apoptosis Regulatory Proteins
12.
Immunity ; 44(2): 422-37, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26885862

ABSTRACT

Dendritic cells (DCs) orchestrate complex membrane trafficking through an interconnected transportation network linked together by Rab GTPases. Through a tandem affinity purification strategy and mass spectrometry, we depicted an interactomic landscape of major members of the mammalian Rab GTPase family. When complemented with imaging tools, this proteomic analysis provided a global view of intracellular membrane organization. Driven by this analysis, we investigated dynamic changes to the Rab32 subnetwork in DCs induced by L. monocytogenes infection and uncovered an essential role of this subnetwork in controlling the intracellular proliferation of L. monocytogenes. Mechanistically, Rab32 formed a persistent complex with two interacting proteins, PHB and PHB2, to encompass bacteria both during early phagosome formation and after L. monocytogenes escaped the original containment vacuole. Collectively, we have provided a functional compartmentalization overview and an organizational framework of intracellular Rab-mediated vesicle trafficking that can serve as a resource for future investigations.


Subject(s)
Dendritic Cells/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Multiprotein Complexes/metabolism , rab GTP-Binding Proteins/metabolism , Acyltransferases/metabolism , Animals , Anti-Infective Agents/therapeutic use , Cell Line , Computational Biology , Containment of Biohazards , Dendritic Cells/microbiology , Listeria monocytogenes/growth & development , Listeriosis/drug therapy , Mice , Prohibitins , Protein Transport , Repressor Proteins/metabolism , Vacuoles/metabolism
13.
Circ Res ; 133(12): 989-1002, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37955115

ABSTRACT

BACKGROUND: Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS: NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS: NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS: Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.


Subject(s)
CD47 Antigen , Ventricular Remodeling , Humans , Mice , Animals , CD47 Antigen/genetics , Ventricular Remodeling/physiology , RNA , Cardiomegaly/metabolism , RNA, Messenger/genetics , Gene Expression Profiling , N-Terminal Acetyltransferases
14.
J Immunol ; 210(3): 259-270, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36480265

ABSTRACT

A growing body of evidence has shown that resident memory T (TRM) cells formed in tissue after mucosal infection or vaccination are crucial for counteracting reinfection by pathogens. However, whether lung TRM cells activated by oral immunization with Yptb1(pYA5199) play a protective role against pneumonic plague remains unclear. In this study, we demonstrated that lung CD4+ and CD8+ TRM cells significantly accumulated in the lungs of orally Yptb1(pYA5199)-vaccinated mice and dramatically expanded with elevated IL-17A, IFN-γ, and/or TNF-α production after pulmonary Yersinia pestis infection and afforded significant protection. Short-term or long-term treatment of immunized mice with FTY720 did not affect lung TRM cell formation and expansion or protection against pneumonic plague. Moreover, the intratracheal transfer of both lung CD4+ and CD8+ TRM cells conferred comprehensive protection against pneumonic plague in naive recipient mice. Lung TRM cell-mediated protection was dramatically abolished by the neutralization of both IFN-γ and IL-17A. Our findings reveal that lung TRM cells can be activated via oral Yptb1(pYA5199) vaccination, and that IL-17A and IFN-γ production play an essential role in adaptive immunity against pulmonary Y. pestis infection. This study highlights an important new target for developing an effective pneumonic plague vaccine.


Subject(s)
Plague , Yersinia pestis , Mice , Animals , Plague/prevention & control , Interleukin-17 , Memory T Cells , Vaccination , Lung
15.
Nature ; 575(7782): 336-340, 2019 11.
Article in English | MEDLINE | ID: mdl-31723273

ABSTRACT

Organoboron reagents are important synthetic intermediates that have a key role in the construction of natural products, pharmaceuticals and organic materials1. The discovery of simpler, milder and more efficient approaches to organoborons can open additional routes to diverse substances2-5. Here we show a general method for the directed C-H borylation of arenes and heteroarenes without the use of metal catalysts. C7- and C4-borylated indoles are produced by a mild approach that is compatible with a broad range of functional groups. The mechanism, which is established by density functional theory calculations, involves BBr3 acting as both a reagent and a catalyst. The potential utility of this strategy is highlighted by the downstream transformation of the formed boron species into natural products and drug scaffolds.


Subject(s)
Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Boron/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Density Functional Theory , Drug Discovery , Indoles/chemistry , Organometallic Compounds/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
16.
Nature ; 567(7747): 257-261, 2019 03.
Article in English | MEDLINE | ID: mdl-30814741

ABSTRACT

Hepatocellular carcinoma is the third leading cause of deaths from cancer worldwide. Infection with the hepatitis B virus is one of the leading risk factors for developing hepatocellular carcinoma, particularly in East Asia1. Although surgical treatment may be effective in the early stages, the five-year overall rate of survival after developing this cancer is only 50-70%2. Here, using proteomic and phospho-proteomic profiling, we characterize 110 paired tumour and non-tumour tissues of clinical early-stage hepatocellular carcinoma related to hepatitis B virus infection. Our quantitative proteomic data highlight heterogeneity in early-stage hepatocellular carcinoma: we used this to stratify the cohort into the subtypes S-I, S-II and S-III, each of which has a different clinical outcome. S-III, which is characterized by disrupted cholesterol homeostasis, is associated with the lowest overall rate of survival and the greatest risk of a poor prognosis after first-line surgery. The knockdown of sterol O-acyltransferase 1 (SOAT1)-high expression of which is a signature specific to the S-III subtype-alters the distribution of cellular cholesterol, and effectively suppresses the proliferation and migration of hepatocellular carcinoma. Finally, on the basis of a patient-derived tumour xenograft mouse model of hepatocellular carcinoma, we found that treatment with avasimibe, an inhibitor of SOAT1, markedly reduced the size of tumours that had high levels of SOAT1 expression. The proteomic stratification of early-stage hepatocellular carcinoma presented in this study provides insight into the tumour biology of this cancer, and suggests opportunities for personalized therapies that target it.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Molecular Targeted Therapy/trends , Proteomics , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell Growth Processes , Cell Movement , Hepatitis B virus/pathogenicity , Humans , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Staging , Prognosis , Sterol O-Acyltransferase/genetics
17.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38124544

ABSTRACT

Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.


Subject(s)
Dentate Gyrus , Spatial Memory , Mice , Animals , Dentate Gyrus/metabolism , Motor Activity , Sexual Maturation , Hippocampus/metabolism , Synaptic Transmission/physiology
18.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613672

ABSTRACT

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Subject(s)
Eosine Yellowish-(YS)/analogs & derivatives , Interleukin-8 , Phosphatidylethanolamines , Pre-Eclampsia , Pregnancy , Humans , Female , Interleukin-8/genetics , Phosphatidylinositol 3-Kinases , Pre-Eclampsia/genetics , Placenta , Arteries , Culture Media, Conditioned , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins
19.
Mol Cell Proteomics ; 22(8): 100603, 2023 08.
Article in English | MEDLINE | ID: mdl-37348606

ABSTRACT

Liquid biopsy is a noninvasive technique that can provide valuable information for disease characterization by using biofluids as a source of biomarkers. Proteins found in biofluids can offer a wealth of information for understanding pathological processes. In this study, we used early-stage clear cell renal cell carcinoma (ccRCC) as a model to explore the proteomic relationships among tissue, plasma, and urine. We analyzed samples of tumor tissue, plasma, and urine from a cohort of 27 ccRCC patients with T1-2 stage and 27 matched healthy controls, using liquid chromatography-mass spectrometry (LC-MS) for proteomic analysis. We integrated the differential proteins found in the three types of samples to explore ccRCC-associated molecular changes. Our results showed that both plasma and urine proteomes could reflect functional changes in tumor tissue. In plasma, cytoskeletal proteins and metabolic enzymes were differentially expressed, while in urine, adhesion molecules and defense proteins showed differential levels. The differential proteins found in plasma and urine both reflect the binding and catalytic activity of tumor tissue. Additionally, proteins only changed in biofluids could reflect body immune response changes, with plasma proteins involved in actin cytoskeleton and oxidative stress, and urine proteins involved in granulocyte adhesion and leukocyte extravasation signaling. Plasma and urine proteins could effectively distinguish RCC from control, with good performances (plasma/urine: 92.6%/92.6% specificity, 96.3%/92.6% sensitivity, and an area under the curve of 0.981/0.97). In conclusion, biofluids could not only reflect functional changes in tumor tissue but also reflect changes in the body's immune response. These findings will benefit the understanding of body biomarkers in tumors and the discovery of potential disease biomarkers.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Proteomics/methods , Biomarkers, Tumor/metabolism , Liquid Biopsy
20.
Mol Cell Proteomics ; 22(7): 100574, 2023 07.
Article in English | MEDLINE | ID: mdl-37209815

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent cancer in China, with chronic hepatitis B (CHB) and liver cirrhosis (LC) being high-risk factors for developing HCC. Here, we determined the serum proteomes (762 proteins) of 125 healthy controls and Hepatitis B virus-infected CHB, LC, and HCC patients and constructed the first cancerous trajectory of liver diseases. The results not only reveal that the majority of altered biological processes were involved in the hallmarks of cancer (inflammation, metastasis, metabolism, vasculature, and coagulation) but also identify potential therapeutic targets in cancerous pathways (i.e., IL17 signaling pathway). Notably, the biomarker panels for detecting HCC in CHB and LC high-risk populations were further developed using machine learning in two cohorts comprised of 200 samples (discovery cohort = 125 and validation cohort = 75). The protein signatures significantly improved the area under the receiver operating characteristic curve of HCC (CHB discovery and validation cohort = 0.953 and 0.891, respectively; LC discovery and validation cohort = 0.966 and 0.818, respectively) compared to using the traditional biomarker, alpha-fetoprotein, alone. Finally, selected biomarkers were validated with parallel reaction monitoring mass spectrometry in an additional cohort (n = 120). Altogether, our results provide fundamental insights into the continuous changes of cancer biology processes in liver diseases and identify candidate protein targets for early detection and intervention.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus , Liver Neoplasms/pathology , Proteomics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Biomarkers , ROC Curve , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Biomarkers, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL