Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Toxicol Mech Methods ; : 1-10, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087424

ABSTRACT

Sanguinarine (SAN) is an alkaloid with multiple biological activities, mainly extracted from Sanguinaria canadensis or Macleaya cordata. The low bioavailability of SAN limits its utilization. At present, the nature and mechanism of SAN intestinal absorption are still unclear. The pharmacokinetics, single-pass intestinal perfusion test (SPIP), and equilibrium solubility test of SAN in rats were studied. The absorption of SAN at 20, 40, and 80 mg/L in different intestinal segments was investigated, and verapamil hydrochloride (P-gp inhibitor), celecoxib (MPR2 inhibitor), and ko143 (BCRP inhibitor) were further used to determine the effect of efflux transporter proteins on SAN absorption. The equilibrium solubility of SAN in three buffer solutions (pH 1.2, 4.5 and 6.8) was investigated. The oral pharmacokinetic results in rats showed that SAN was rapidly absorbed (Tmax=0.5 h), widely distributed (Vz/F = 134 L/kg), rapidly metabolized (CL = 30 L/h/kg), and had bimodal phenomena. SPIP experiments showed that P-gp protein could significantly affect the effective permeability coefficient (Peff) and apparent absorption rate constant (Ka) of SAN. Equilibrium solubility test results show that SAN has the best solubility at pH 4.5. In conclusion, SAN is a substrate of P-gp, and its transport modes include efflux protein transport, passive transport and active transport.

2.
Angew Chem Int Ed Engl ; : e202412434, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177989

ABSTRACT

The practical application of solid-state polymer lithium-metal batteries (LMBs) is plagued by the inferior ionic conductivity of the applied polymer electrolytes (PEs), which is caused by the coupling of ion transport with the motion of polymer segments. Here, solvated molecules based on ionic liquid and lithium salt with strong Li+-solvent interaction are inserted into an elaborately engineered perfluoropolymer electrolyte via ionic dipole interaction, extensively facilitating Li+ transport and improving mechanical properties. The intensified formation of solvation structures of contact ion pairs and ionic aggregates, as well as the strong electron-withdrawal properties of the F atoms in perfluoropolymers, give the PE high electrochemical stability and excellent interfacial stability. As a result, Li||Li symmetric cells demonstrate a lifetime of 2500 h and an exceptionally high critical current density above 2.3 mA cm-2, Li||LiFePO4 batteries exhibit consistent cycling for 550 cycles at 10 C, and Li||uncoated LiNi0.8Co0.1Mn0.1O2 cells achieve 1000 cycles at 0.5 C with an average Coulombic efficiency of 98.45%, one of the best results reported to date based on PEs. Our discovery sheds fresh light on the targeted synergistic regulation of the electro-chemo-mechanical properties of PEs to extend the cycle life of LMBs.

3.
Cell Mol Biol Lett ; 28(1): 105, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105235

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a growing clinical problem that develops as a result of abnormal wound healing, leading to breathlessness, pulmonary dysfunction and ultimately death. However, therapeutic options for pulmonary fibrosis are limited because the underlying pathogenesis remains incompletely understood. Circular RNAs, as key regulators in various diseases, remain poorly understood in pulmonary fibrosis induced by silica. METHODS: We performed studies with fibroblast cell lines and silica-induced mouse pulmonary fibrosis models. The expression of circZNF609, miR-145-5p, and KLF4 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RNA immunoprecipitation (RIP) assays and m6A RNA immunoprecipitation assays (MeRIP), Western blotting, immunofluorescence assays, and CCK8 were performed to investigate the role of the circZNF609/miR-145-5p/KLF4 axis and circZNF609-encoded peptides in fibroblast activation. RESULTS: Our data showed that circZNF609 was downregulated in activated fibroblasts and silica-induced fibrotic mouse lung tissues. Overexpression of circZNF609 could inhibit fibroblast activation induced by transforming growth factor-ß1 (TGF-ß1). Mechanically, we revealed that circZNF609 regulates pulmonary fibrosis via miR-145-5p/KLF4 axis and circZNF609-encoded peptides. Furthermore, circZNF609 was highly methylated and its expression was controlled by N6-methyladenosine (m6A) modification. Lastly, in vivo studies revealed that overexpression of circZNF609 attenuates silica-induced lung fibrosis in mice. CONCLUSIONS: Our data indicate that circZNF609 is a critical regulator of fibroblast activation and silica-induced lung fibrosis. The circZNF609 and its derived peptides may represent novel promising targets for the treatment of pulmonary fibrosis.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , RNA, Circular , Animals , Mice , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Silicon Dioxide/adverse effects , Transforming Growth Factor beta1/metabolism , Kruppel-Like Factor 4/genetics , Kruppel-Like Factor 4/metabolism , RNA, Circular/genetics
4.
J Biomed Res ; 38(2): 163-174, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529638

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.

5.
Front Immunol ; 15: 1354040, 2024.
Article in English | MEDLINE | ID: mdl-38529273

ABSTRACT

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Subject(s)
Antioxidants , Taraxacum , Animals , Antioxidants/pharmacology , Chickens/microbiology , Dietary Supplements , Fatty Acids, Volatile , Poultry
6.
Nat Commun ; 15(1): 3253, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627396

ABSTRACT

Plants, as sessile organisms, deploy transcriptional dynamics for adapting to extreme growth conditions such as cold stress. Emerging evidence suggests that chromatin architecture contributes to transcriptional regulation. However, the relationship between chromatin architectural dynamics and transcriptional reprogramming in response to cold stress remains unclear. Here, we apply a chemical-crosslinking assisted proximity capture (CAP-C) method to elucidate the fine-scale chromatin landscape, revealing chromatin interactions within gene bodies closely associated with RNA polymerase II (Pol II) densities across initiation, pausing, and termination sites. We observe dynamic changes in chromatin interactions alongside Pol II activity alterations during cold stress, suggesting local chromatin dynamics may regulate Pol II activity. Notably, cold stress does not affect large-scale chromatin conformations. We further identify a comprehensive promoter-promoter interaction (PPI) network across the genome, potentially facilitating co-regulation of gene expression in response to cold stress. Our study deepens the understanding of chromatin conformation-associated gene regulation in plant response to cold.


Subject(s)
Arabidopsis , Chromatin , Chromatin/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Promoter Regions, Genetic/genetics , Transcription, Genetic
7.
J Hazard Mater ; 467: 133713, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335607

ABSTRACT

As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.


Subject(s)
Pulmonary Fibrosis , Silicosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Silicon Dioxide/toxicity , Monocytes , Neutrophils , Ligands , Liposomes , Fibrosis , Chemokine CCL3
8.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959864

ABSTRACT

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Secretion , Insulin , Islets of Langerhans , Proteomics , Humans , Diabetes Mellitus, Type 2/metabolism , Male , Female , Insulin/metabolism , Islets of Langerhans/metabolism , Middle Aged , Nutrients/metabolism , Adult , Glucose/metabolism , Aged , Fatty Acids/metabolism
9.
medRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496562

ABSTRACT

Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY: Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.

SELECTION OF CITATIONS
SEARCH DETAIL