ABSTRACT
The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
Subject(s)
Deep Learning , Diagnostic Imaging , Pneumonia/diagnosis , Child , Humans , Neural Networks, Computer , Pneumonia/diagnostic imaging , ROC Curve , Reproducibility of Results , Tomography, Optical CoherenceABSTRACT
Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.
ABSTRACT
Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.
Subject(s)
Adenosine Triphosphate , Methane , Methane/metabolism , Electron Transport , Adenosine Triphosphate/metabolism , Energy Metabolism , Biological Transport , Methanosarcina/metabolismABSTRACT
Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.
Subject(s)
Anemia, Hypochromic , Arabidopsis , Iron Deficiencies , Magnetite Nanoparticles , Iron/metabolism , Biological Transport , Anemia, Hypochromic/metabolism , Arabidopsis/metabolism , Plant Roots/metabolismABSTRACT
Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.
Subject(s)
Bile Duct Neoplasms , Biomarkers, Tumor , Cholangiocarcinoma , Epithelial-Mesenchymal Transition , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Humans , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Prognosis , Male , Lipid Metabolism , Cell Movement , Female , Cell Proliferation , Transcriptome , Middle Aged , Gene Expression Regulation, NeoplasticABSTRACT
The helical edge states (ESs) protected by underlying Z2 topology in two-dimensional topological insulators (TIs) arouse upsurges in saturable absorptions thanks to the strong photon-electron coupling in ESs. However, limited TIs demonstrate clear signatures of topological ESs at liquid nitrogen temperatures, hindering the applications of such exotic quantum states. Here, we demonstrate the existence of one-dimensional (1D) ESs at the step edge of the quasi-1D material Ta2NiSe7 at 78 K by scanning tunneling microscopy. Such ESs are rather robust against the irregularity of the edges, suggesting a possible topological origin. The exfoliated Ta2NiSe7 flakes were used as saturable absorbers (SAs) in an Er-doped fiber laser, hosting a mode-locked pulse with a modulation depth of up to 52.6% and a short pulse duration of 225 fs, far outstripping existing TI-based SAs. This work demonstrates the existence of robust 1D ESs and the superior SA performance of Ta2NiSe7.
ABSTRACT
OBJECTIVE: Different serum lipids and lipid-modifying targets should affect the risk of cholelithiasis differently, however, whether such effects are causal is still controversial and we aimed to answer this question. DESIGN: We prospectively estimated the associations of four serum lipids with cholelithiasis in UK Biobank using the Cox proportional hazard model, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). Furthermore, we estimated the causal associations of the genetically predicted serum lipids with cholelithiasis in Europeans using the Mendelian randomisation (MR) design. Finally, both drug-target MR and colocalisation analyses were performed to estimate the lipid-modifying targets' effects on cholelithiasis, including HMGCR, NPC1L1, PCSK9, APOB, LDLR, ACLY, ANGPTL3, MTTP, PPARA, PPARD and PPARG. RESULTS: We found that serum levels of LDL-C and HDL-C were inversely associated with cholelithiasis risk and such associations were linear. However, the serum level of TC was non-linearly associated with cholelithiasis risk where lower TC was associated with higher risk of cholelithiasis, and the serum TG should be in an inverted 'U-shaped' relationship with it. The MR analyses supported that lower TC and higher TG levels were two independent causal risk factors. The drug-target MR analysis suggested that HMGCR inhibition should reduce the risk of cholelithiasis, which was corroborated by colocalisation analysis. CONCLUSION: Lower serum TC can causally increase the risk of cholelithiasis. The cholelithiasis risk would increase with the elevation of serum TG but would decrease when exceeding 2.57 mmol/L. The use of HMGCR inhibitors should prevent its risk.
Subject(s)
Cholelithiasis , Proprotein Convertase 9 , Humans , Cholesterol, LDL , Triglycerides , Cholesterol, HDL , Angiopoietin-Like Protein 3ABSTRACT
BACKGROUND: The value of serum biomarkers, particularly alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II), gains increasing attention in prognostic evaluation and recurrence monitoring for patients with hepatocellular carcinoma (HCC). This study investigated the implications of serological incomplete conversion (SIC) of these 2 biomarkers as prognostic indicators for long-term outcomes after HCC resection. METHODS: A multicenter observational study was conducted on a cohort of HCC patients presenting with AFP (>20 ng/mL) or PIVKA-II (>40 mAU/mL) positivity who underwent curative-intent resection. Based on their postoperative AFP and PIVKA-II levels at first postoperative follow-up (4~8 weeks after surgery), these patients were stratified into the serological incomplete conversion (SIC) and serological complete conversion (SCC) groups. The study endpoints were recurrence and overall survival (OS). RESULTS: Among 1755 patients, 379 and 1376 were categorized as having SIC and SCC, respectively. The SIC group exhibited 1- and 5-year OS rates of 67.5% and 26.3%, with the corresponding recurrence rates of 53.2% and 79.0%, respectively; while the SCC group displayed 1- and 5-year OS rates of 95.8% and 62.5%, with the corresponding recurrence rates of 16.8% and 48.8%, respectively (both Pâ <â .001). Multivariate Cox regression analysis demonstrated that postoperative SIC was an independent risk factor for both increased recurrence (HR: 2.40, 95% CI, 2.04-2.81, Pâ <â .001) and decreased OS (HR: 2.69, 95% CI, 2.24-3.24, Pâ <â .001). CONCLUSION: The results emphasize that postoperative incomplete conversion of either AFP or PIVKA-II is a significant prognostic marker, indicating a higher risk for adverse oncologic outcomes following HCC resection. This revelation has crucial implications for refining postoperative adjuvant therapy and surveillance strategies for HCC patients.
ABSTRACT
Addressing the challenge of understanding how cellular interfaces dictate the mechanical resilience and adhesion of archaeal cells, this study demonstrates the role of the surface layer (S-layer) in methanogenic archaea. Using a combination of atomic force microscopy and single-cell force spectroscopy, we quantified the impact of S-layer disruption on cell morphology, mechanical properties, and adhesion capabilities. We demonstrate that the S-layer is crucial for maintaining cell morphology, where its removal induces significant cellular enlargement and deformation. Mechanical stability of the cell surface is substantially compromised upon S-layer disruption, as evidenced by decreased Young's modulus values. Adhesion experiments revealed that the S-layer primarily facilitates hydrophobic interactions, which are significantly reduced after its removal, affecting both cell-cell and cell-bubble interactions. Our findings illuminate the S-layer's fundamental role in methanogen architecture and provide a chemical understanding of archaeal cell surfaces, with implications for enhancing methane production in biotechnological applications.
Subject(s)
Microscopy, Atomic Force , Single-Cell Analysis , Surface Properties , Archaea/chemistry , Archaea/metabolism , Cell Adhesion , Hydrophobic and Hydrophilic InteractionsABSTRACT
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Subject(s)
Heart Diseases , Muscular Diseases , Humans , Muscle Proteins/metabolism , Muscular Diseases/genetics , Heart Diseases/genetics , Mutation , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/geneticsABSTRACT
Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.
Subject(s)
Doxorubicin , Drug Delivery Systems , Glioma , Prodrugs , Glioma/drug therapy , Glioma/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Humans , Drug Delivery Systems/methods , Cell Line, Tumor , Prodrugs/chemistry , Prodrugs/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Glutathione/metabolism , Glutathione/chemistry , Nanoparticles/chemistry , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Curcumin/chemistry , Curcumin/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacologyABSTRACT
T cells are key mediators of alloresponse during liver transplantation (LTx). However, the dynamics of donor-reactive T-cell clones in peripheral blood during a clinical T-cell-mediated rejection (TCMR) episode remain unknown. Here, we collected serial peripheral blood mononuclear cell samples spanning from pre-LTx to 1 year after LTx and available biopsies during the TCMR episodes from 26 rejecting patients, and serial peripheral blood mononuclear cell samples were collected from 96 nonrejectors. Immunophenotypic and repertoire analyses were integrated on T cells from rejectors, and they were longitudinally compared to nonrejected patients. Donor-reactive T-cell clone was identified and tracked by cross-matching with the mappable donor-reactive T-cell receptor repertoire of each donor-recipient pair in 9 rejectors and 5 nonrejectors. Before transplantation, the naive T-cell percentage and T-cell receptor repertoire diversity of rejectors was comparable to that of healthy control, but it was reduced in nonrejectors. After transplantation, the naïve T-cell percentages decreased, and T-cell receptor repertoires were skewed in rejectors; the phenomenon was not observed in nonrejectors. Alloreactive clones increased in proportion in the peripheral blood of rejectors before TCMR for weeks. The increase was accompanied by the naïve T-cell decline and memory T-cell increase and acquired an activated phenotype. Intragraft alloreactive clone tracking in pre-LTx and post-LTx peripheral blood mononuclear cell samples revealed that the pretransplant naïve T cells were significant contributors to the donor-reactive clones, and they temporarily increased in proportion and subsequently reduced in blood at the beginning of TCMR. Together, our findings offer an insight into the dynamic and origin of alloreactive T cells in clinical LTx TCMR cases and may facilitate disease prediction and management.
ABSTRACT
PURPOSE: To evaluate the 2-year efficacy, durability, and safety of dual angiopoietin-2 and vascular endothelial growth factor (VEGF) A pathway inhibition with intravitreal faricimab according to a personalized treat-and-extend (T&E)-based regimen with up to every-16-week dosing in the YOSEMITE and RHINE (ClinicalTrials.gov identifiers, NCT03622580 and NCT03622593, respectively) phase 3 trials of diabetic macular edema (DME). DESIGN: Randomized, double-masked, noninferiority phase 3 trials. PARTICIPANTS: Adults with visual acuity loss (best-corrected visual acuity [BCVA] of 25-73 letters) due to center-involving DME. METHODS: Patients were randomized 1:1:1 to faricimab 6.0 mg every 8 weeks, faricimab 6.0 mg T&E (previously referred to as personalized treatment interval), or aflibercept 2.0 mg every 8 weeks. The T&E up to every-16-week dosing regimen was based on central subfield thickness (CST) and BCVA change. MAIN OUTCOME MEASURES: Included changes from baseline in BCVA and CST, number of injections, durability, absence of fluid, and safety through week 100. RESULTS: In YOSEMITE and RHINE (n = 940 and 951, respectively), noninferior year 1 visual acuity gains were maintained through year 2; mean BCVA change from baseline at 2 years (weeks 92, 96, and 100 average) with faricimab every 8 weeks (YOSEMITE and RHINE, +10.7 letters and +10.9 letters, respectively) or T&E (+10.7 letters and +10.1 letters, respectively) were comparable with aflibercept every 8 weeks (+11.4 letters and +9.4 letters, respectively). The median number of study drug injections was lower with faricimab T&E (YOSEMITE and RHINE, 10 and 11 injections, respectively) versus faricimab every 8 weeks (15 injections) and aflibercept every 8 weeks (14 injections) across both trials during the entire study. In the faricimab T&E arms, durability was improved further during year 2, with > 60% of patients receiving every-16-week dosing and approximately 80% receiving every-12-week or longer dosing at week 96. Almost 80% of patients who achieved every-16-week dosing at week 52 maintained every-16-week dosing without an interval reduction through week 96. Mean CST reductions were greater (YOSEMITE/RHINE weeks 92/96/100 average: faricimab every 8 weeks -216.0/-202.6 µm, faricimab T&E -204.5/-197.1 µm, aflibercept every 8 weeks -196.3/-185.6 µm), and more patients achieved absence of DME (CST < 325 µm; YOSEMITE/RHINE weeks 92-100: faricimab every 8 weeks 87%-92%/88%-93%, faricimab T&E 78%-86%/85%-88%, aflibercept every 8 weeks 77%-81%/80%-84%) and absence of intraretinal fluid (YOSEMITE/RHINE weeks 92-100: faricimab every 8 weeks 59%-63%/56%-62%, faricimab T&E 43%-48%/45%-52%, aflibercept every 8 weeks 33%-38%/39%-45%) with faricimab every 8 weeks or T&E versus aflibercept every 8 weeks through year 2. Overall, faricimab was well tolerated, with a safety profile comparable with that of aflibercept. CONCLUSIONS: Clinically meaningful visual acuity gains from baseline, anatomic improvements, and extended durability with intravitreal faricimab up to every 16 weeks were maintained through year 2. Faricimab given as a personalized T&E-based dosing regimen supports the role of dual angiopoietin-2 and VEGF-A inhibition to promote vascular stability and to provide durable efficacy for patients with DME. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Subject(s)
Angiogenesis Inhibitors , Diabetic Retinopathy , Intravitreal Injections , Macular Edema , Vascular Endothelial Growth Factor A , Visual Acuity , Humans , Macular Edema/drug therapy , Macular Edema/physiopathology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/physiopathology , Diabetic Retinopathy/diagnosis , Visual Acuity/physiology , Double-Blind Method , Male , Female , Middle Aged , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Aged , Tomography, Optical Coherence , Treatment Outcome , Receptors, Vascular Endothelial Growth Factor/administration & dosage , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/therapeutic use , Angiopoietin-2/antagonists & inhibitors , Follow-Up Studies , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic useABSTRACT
BACKGROUND: Faricimab stands as the inaugural and sole bispecific antibody approved by the US Food and Drug Administration (FDA) for intravitreal injection. Nonetheless, the efficacy and safety of intravitreal faricimab remained uncertain. OBJECTIVES: The purpose of this study was to evaluate faricimab. METHODS: This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (CRD42023398320). Five databases (Pubmed, Embase, Web of science, Cochrane Library, ClinicalTrials gov) were searched. We calculated pooled standard mean difference or odds ratio with 95â¯% confident interval under a random-effect model or fixed-effect model. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was employed to ascertain the reliability of the analyses. Trial sequential analysis was performed to gauge the statistical reliability of the data in the cumulative meta-analysis. RESULTS: 8 studies (3975 participants) were included. The use of faricimab was associated with central subfield thickness (CST) change, but no difference was found in other primary efficacy outcomes. Apart from that, a correlation was observed between the use of faricimab and the risk of vitreous floaters. Based on TSA, strong evidence indicates that compared to the control group, faricimab aided in reducing CST but increasing the risk of vitreous floaters. CONCLUSIONS: In this study, a correlation existed between the use of faricimab and a reduction in CST, indicating a superior therapeutic effect. Moreover, participants treated with faricimab demonstrated a higher risk of vitreous floaters. More randomized controlled trials are essential to further explore the efficacy and safety of faricimab.
Subject(s)
Intravitreal Injections , Retinal Diseases , Humans , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/administration & dosage , Retinal Diseases/drug therapy , Treatment OutcomeABSTRACT
AIM: This study assessed the efficacy and safety of co-administering retagliptin and henagliflozin versus individual agents at corresponding doses in patients with type 2 diabetes mellitus who were inadequately controlled with metformin. METHODS: This multicentre, phase 3 trial consisted of a 24-week, randomized, double-blind, active-controlled period. Patients with glycated haemoglobin (HbA1c) levels between 7.5% and 10.5% were randomized to receive once-daily retagliptin 100 mg (R100; n = 155), henagliflozin 5 mg (H5; n = 156), henagliflozin 10 mg (H10; n = 156), co-administered R100/H5 (n = 155), or R100/H10 (n = 156). The primary endpoint was the change in HbA1c from baseline to week 24. RESULTS: Based on the primary estimand, the least squares mean reductions in HbA1c at week 24 were significantly greater in the R100/H5 (-1.51%) and R100/H10 (-1.54%) groups compared with those receiving the corresponding doses of individual agents (-0.98% for R100, -0.86% for H5 and -0.95% for H10, respectively; p < .0001 for all pairwise comparisons). Achievement of HbA1c <7.0% at week 24 was observed in 27.1% of patients in the R100 group, 21.2% in the H5 group, 24.4% in the H10 group, 57.4% in the R100/H5 group and 56.4% in the R100/H10 group. Reductions in fasting plasma glucose and 2-h postprandial glucose were also more pronounced in the co-administration groups compared with the individual agents at corresponding doses. Decreases in body weight and systolic blood pressure were greater in the groups containing henagliflozin than in the R100 group. The incidence rates of adverse events were similar across all treatment groups, with no reported episodes of severe hypoglycaemia. CONCLUSIONS: For patients with type 2 diabetes mellitus inadequately controlled by metformin monotherapy, the co-administration of retagliptin and henagliflozin yielded more effective glycaemic control through 24 weeks compared with the individual agents at their corresponding doses.
Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Middle Aged , Female , Double-Blind Method , Metformin/administration & dosage , Metformin/therapeutic use , Glycated Hemoglobin/analysis , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Aged , Adult , Treatment OutcomeABSTRACT
Seed priming with nanomaterials is an emerging approach for improving plant stress tolerance. Here, we demonstrated a mechanism for enhancing salt tolerance in rice under salt stress via priming with nonstimulatory nanoparticles such as selenium nanoparticles (SeNPs), distinct from stimulatory nanomaterials. Due to the dynamic transformation ability of SeNPs, SeNP priming could enhance rice salt tolerance by mediating the glutathione cycle to eliminate excess reactive oxygen species (ROS). During priming, SeNPs penetrated rice seeds and transitioned into a soluble form (99.9%) within the embryo endosperm. Subsequently, the soluble selenium (Se) was transported to rice roots and metabolized into various Se-related derivatives, including selenomethionine (SeMet), Na2SeO3 (Se IV), selenocysteine (SeCys2), and methylselenocysteine (MeSeCys). These derivatives significantly enhanced the root activities of key enzymes such as glutathione peroxidase (GSH-PX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 24.97%, 47.98%, 16.23%, 16.81%, and 14.82%, respectively, thus reinforcing the glutathione cycle and ROS scavenging pathways. Moreover, these alterations induced transcriptional changes in rice seedlings, with genes involved in signal transduction, transcription factors (TFs), ROS scavenging, and protein folding being upregulated, activating signal perception and self-repair mechanisms. These findings offer valuable insights for the agricultural application of nanomaterials.
ABSTRACT
BACKGROUND: The isolation rate and drug resistance rate of Acinetobacter baumannii (A.baumannii) have increased over the years, which has become one of the main causes of infection and death in intensive care unit (ICU) patients. Analysis of the distribution characteristics, drug resistance and influencing factors of A.baumannii in ICU could provide basis and reference for the infection prevention and clinical treatment. METHODS AND RESULTS: In this study, patients diagnosed with A.baumannii infection in ICU from January 2020 to December 2021 were selected. Samples of patients were collected for bacterial culture, drug sensitivity test analysis and drug resistant gene detection of A.baumannii. A total of 197 strains of A.baumannii were cultured in 2021, which was 18 strains more than in 2020. The specimens were mainly from lower respiratory tract secretions, and the isolated strains were multi-drug resistant. The resistance of isolates to tobramycin, gentamicin, and trimethoprim-sulfamethoxazole in 2021 showed a significant increase compared to 2020, while there were no significant differences observed in other resistance changes. The prevalence of multi-drug resistant A.baumannii in ICU remains high. Among them, all imipenem-resistant A.baumannii strains carried OXA-23 gene. CONCLUSION: Clinical treatment should use antibiotics reasonably based on the characteristics of bacterial resistance, and strengthen the prevention and control of hospital infection, pay more attention to the disinfection and isolation to reduce the risk of cross infection.
Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Humans , Acinetobacter baumannii/genetics , Intensive Care Units , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug ResistanceABSTRACT
BACKGROUND: Properly designed second near-infrared (NIR-II) nanoplatform that is responsive tumor microenvironment can intelligently distinguish between normal and cancerous tissues to achieve better targeting efficiency. Conventional photoacoustic nanoprobes are always "on", and tumor microenvironment-responsive nanoprobe can minimize the influence of endogenous chromophore background signals. Therefore, the development of nanoprobe that can respond to internal tumor microenvironment and external stimulus shows great application potential for the photoacoustic diagnosis of tumor. RESULTS: In this work, a low-pH-triggered thermal-responsive volume phase transition nanogel gold nanorod@poly(n-isopropylacrylamide)-vinyl acetic acid (AuNR@PNIPAM-VAA) was constructed for photoacoustic detection of tumor. Via an external near-infrared photothermal switch, the absorption of AuNR@PNIPAM-VAA nanogel in the tumor microenvironment can be dynamically regulated, so that AuNR@PNIPAM-VAA nanogel produces switchable photoacoustic signals in the NIR-II window for tumor-specific enhanced photoacoustic imaging. In vitro results show that at pH 5.8, the absorption and photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel in NIR-II increases up obviously after photothermal modulating, while they remain slightly change at pH 7.4. Quantitative calculation presents that photoacoustic signal amplitude of AuNR@PNIPAM-VAA nanogel at 1064 nm has ~ 1.6 folds enhancement as temperature increases from 37.5 °C to 45 °C in simulative tumor microenvironment. In vivo results show that the prepared AuNR@PNIPAM-VAA nanogel can achieve enhanced NIR-II photoacoustic imaging for selective tumor detection through dynamically responding to thermal field, which can be precisely controlled by external light. CONCLUSIONS: This work will offer a viable strategy for the tumor-specific photoacoustic imaging using NIR light to regulate the thermal field and target the low pH tumor microenvironment, which is expected to realize accurate and dynamic monitoring of tumor diagnosis and treatment.
Subject(s)
Acrylic Resins , Gold , Nanogels , Photoacoustic Techniques , Tumor Microenvironment , Photoacoustic Techniques/methods , Animals , Gold/chemistry , Mice , Hydrogen-Ion Concentration , Acrylic Resins/chemistry , Nanogels/chemistry , Humans , Cell Line, Tumor , Polyethylene Glycols/chemistry , Nanotubes/chemistry , Mice, Inbred BALB C , Neoplasms/diagnostic imaging , Mice, Nude , Infrared Rays , Female , Polyethyleneimine/chemistryABSTRACT
BACKGROUND: Umbilical cord blood (UCB) is a rich source of multifunctional stem cells characterized by low immunogenicity. Recent research in the fields of aging and regenerative medicine has revealed the potential of human umbilical cord blood-derived exosomes (UCB-Exos) in promoting wound healing, anti-aging, and regeneration. However, their role in neurodegenerative diseases, specifically Parkinson's disease (PD), remains unexplored. This study investigates the potential therapeutic effects and underlying mechanisms of UCB-Exos on PD. METHODS: Large extracellular vesicles (LEv), Exos, and soluble fractions (SF) of human UCB plasma were extracted to investigate their effects on motor dysfunction of the MPTP-induced PD mouse model and identify the key components that improve PD symptoms. UCB-Exos were administered by the caudal vein to prevent or treat the PD mouse model. The motor function and pathological markers were detected. Differentially expressed gene and KEGG enrichment pathways were screened by transcriptome sequence. MN9D and SH-SY5Y cells were cultured and evaluated for cell viability, oxidative stress, cell cycle, and aging-related indexes by qRT-PCR, western blot, immunofluorescence, and flow cytometry. The protein expression level of the MAPK p38 and ERK1/2 signaling pathway was detected by western blot. RESULTS: We observed that LEv, Exos, and SF all exhibited potential in ameliorating motor dysfunction in MPTP-induced PD model mice, with UCB-Exos demonstrating the most significant effect. UCB-Exos showed comparable efficacy in preventing and treating motor dysfunction, cognitive decline, and substantia nigra pathological damage in PD mice. Further investigations revealed that UCB-Exos could potentially alleviate oxidative damage, aging and degeneration, and energy metabolism disorders in neurons. Transcriptome sequencing results corroborated that genes differentially expressed due to UCB-Exos were primarily enriched in the neuroactive ligand-receptor interaction, Dopaminergic synapse, and MAPK signaling pathway. We also observed that UCB-Exos significantly inhibited the hyperphosphorylation of the MAPK p38 and ERK1/2 signaling pathways both in vitro and in vivo. CONCLUSIONS: Our study provides a comprehensive evaluation of UCB-Exos on the neuroprotective effects and suggests that inhibition of hyperphosphorylation of MAPK p38 and ERK 1/2 signaling pathways by regulating transcription levels of HspB1 and Ppef2 may be the key mechanism for UCB-Exos to improve PD-related pathological features.
Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Exosomes , Fetal Blood , Mice, Inbred C57BL , Parkinson Disease , Animals , Exosomes/metabolism , Dopaminergic Neurons/metabolism , Mice , Humans , Parkinson Disease/metabolism , Fetal Blood/cytology , Male , Oxidative Stress , MAP Kinase Signaling System , Extracellular Vesicles/metabolism , Cell Line, Tumor , Cell Survival , Cell LineABSTRACT
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.