Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.265
Filter
Add more filters

Publication year range
1.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37794590

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
2.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35120663

ABSTRACT

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Polysaccharides/metabolism , Acyl Coenzyme A/metabolism , Amino Acid Sequence , Amino Acids, Branched-Chain/metabolism , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/growth & development , Butyrates/chemistry , Butyrates/pharmacology , Coenzyme A-Transferases/chemistry , Coenzyme A-Transferases/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Genetic Variation/drug effects , Hydrogen-Ion Concentration , Metabolome/drug effects , Metabolome/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Species Specificity , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcription, Genetic/drug effects
3.
Cell ; 181(7): 1612-1625.e13, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32497499

ABSTRACT

Responses to anti-PD-1 immunotherapy occur but are infrequent in bladder cancer. The specific T cells that mediate tumor rejection are unknown. T cells from human bladder tumors and non-malignant tissue were assessed with single-cell RNA and paired T cell receptor (TCR) sequencing of 30,604 T cells from 7 patients. We find that the states and repertoires of CD8+ T cells are not distinct in tumors compared with non-malignant tissues. In contrast, single-cell analysis of CD4+ T cells demonstrates several tumor-specific states, including multiple distinct states of regulatory T cells. Surprisingly, we also find multiple cytotoxic CD4+ T cell states that are clonally expanded. These CD4+ T cells can kill autologous tumors in an MHC class II-dependent fashion and are suppressed by regulatory T cells. Further, a gene signature of cytotoxic CD4+ T cells in tumors predicts a clinical response in 244 metastatic bladder cancer patients treated with anti-PD-L1.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, MHC Class II , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory , Urinary Bladder Neoplasms/immunology
4.
Immunity ; 56(9): 2006-2020.e6, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37473759

ABSTRACT

Anti-interleukin-17 (IL-17) therapy has been used in various autoimmune diseases. However, the efficacy is unexpectedly limited in several IL-17-associated diseases, and the mechanism of limited efficacy remains unclear. Here, we show that a molecular complex containing the adaptor molecule Act1 and tyrosine phosphatase SHP2 mediated autonomous IL-17R signaling that accelerated and sustained inflammation. SHP2, aberrantly augmented in various autoimmune diseases, was induced by IL-17A itself in astrocytes and keratinocytes, sustaining chemokine production even upon anti-IL-17 therapies. Mechanistically, SHP2 directly interacted with and dephosphorylated Act1, which replaced Act1-TRAF5 complexes and induced IL-17-independent activation of IL-17R signaling. Genetic or pharmacologic inactivation of SHP2, or blocking Act1-SHP2 interaction, paralyzed both IL-17-induced and IL-17-independent signaling and attenuated primary or relapsing experimental autoimmune encephalomyelitis. Therefore, Act1-SHP2 complexes mediate an alternative pathway for autonomous activation of IL-17R signaling, targeting which could be a therapeutic option for IL-17-related diseases in addition to current antibody therapies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Receptors, Interleukin-17 , Animals , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Inflammation , Disease Progression
5.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32553276

ABSTRACT

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Subject(s)
Dendritic Cells/immunology , Keratinocytes/metabolism , Phosphoprotein Phosphatases/deficiency , Polyamines/metabolism , Psoriasis/pathology , RNA/immunology , 3T3 Cells , Animals , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginine/metabolism , Autoantigens/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Disease Models, Animal , HEK293 Cells , HaCaT Cells , Humans , Interleukin-17/metabolism , Macaca fascicularis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Phosphorylation , Skin/pathology , Toll-Like Receptor 7/immunology
6.
Nature ; 591(7848): 124-130, 2021 03.
Article in English | MEDLINE | ID: mdl-33494096

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunology
7.
Proc Natl Acad Sci U S A ; 121(4): e2316477121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236737

ABSTRACT

Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.

8.
Hum Mol Genet ; 33(13): 1142-1151, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38557732

ABSTRACT

Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.


Subject(s)
Fibroblasts , Gene Editing , Genetic Therapy , Oculocerebrorenal Syndrome , Phosphoric Monoester Hydrolases , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Humans , Fibroblasts/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Genetic Therapy/methods , Gene Editing/methods , Mutation , Adenine/metabolism
9.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Article in English | MEDLINE | ID: mdl-37291262

ABSTRACT

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Mice , Animals , Genetic Vectors/genetics , Mice, Transgenic , Genetic Therapy , Transgenes , Dependovirus/genetics , Transduction, Genetic
10.
Plant Cell ; 35(6): 2369-2390, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36869653

ABSTRACT

Plants often utilize nucleotide-binding leucine-rich repeat (NLR) proteins to perceive pathogen infections and trigger a hypersensitive response (HR). The endosomal sorting complex required for transport (ESCRT) machinery is a conserved multisubunit complex that is essential for the biogenesis of multivesicular bodies and cargo protein sorting. VPS23 is a key component of ESCRT-I and plays important roles in plant development and abiotic stresses. ZmVPS23L, a homolog of VPS23-like in maize (Zea mays), was previously identified as a candidate gene in modulating HR mediated by the autoactive NLR protein Rp1-D21 in different maize populations. Here, we demonstrate that ZmVPS23L suppresses Rp1-D21-mediated HR in maize and Nicotiana benthamiana. Variation in the suppressive effect of HR by different ZmVPS23L alleles was correlated with variation in their expression levels. ZmVPS23 also suppressed Rp1-D21-mediated HR. ZmVPS23L and ZmVPS23 predominantly localized to endosomes, and they physically interacted with the coiled-coil domain of Rp1-D21 and mediated the relocation of Rp1-D21 from the nucleo-cytoplasm to endosomes. In summary, we demonstrate that ZmVPS23L and ZmVPS23 are negative regulators of Rp1-D21-mediated HR, likely by sequestrating Rp1-D21 in endosomes via physical interaction. Our findings reveal the role of ESCRT components in controlling plant NLR-mediated defense responses.


Subject(s)
Leucine-Rich Repeat Proteins , Zea mays , Zea mays/metabolism , Plant Proteins/metabolism , NLR Proteins/metabolism , Endosomes/metabolism , Protein Transport , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nucleotides/metabolism
11.
EMBO Rep ; 25(3): 1208-1232, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291338

ABSTRACT

Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , RNA, Long Noncoding , Animals , Mice , Autoimmunity , Peptides/metabolism , RNA, Long Noncoding/genetics , T-Lymphocytes, Regulatory/metabolism
12.
J Immunol ; 213(3): 257-267, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38856632

ABSTRACT

Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.


Subject(s)
Immunomodulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mesenchymal Stem Cells/immunology , Animals , Mice , Humans , Mesenchymal Stem Cell Transplantation/methods , Tryptophan-tRNA Ligase/genetics , Psoriasis/immunology , Psoriasis/therapy , Disease Models, Animal , Single-Cell Analysis , Sequence Analysis, RNA , Umbilical Cord/cytology , Umbilical Cord/immunology , Mice, Inbred C57BL , Cells, Cultured
13.
Nature ; 583(7814): 154, 2020 07.
Article in English | MEDLINE | ID: mdl-32555452

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Proc Natl Acad Sci U S A ; 120(28): e2304726120, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37399372

ABSTRACT

FeO is a crucial component of the Earth's core, and its thermodynamic properties are essential to developing more accurate core models. It is also a notorious correlated insulator in the NaCl-type (B1) phase at ambient conditions. It undergoes two polymorphic transitions at 300 K before it becomes metallic in the NiAs-type (B8) structure at ~100 GPa. Although its phase diagram is not fully mapped, it is well established that the B8 phase transforms to the CsCl-type (B2) phase at core pressures and temperatures. Here, we report a successful ab initio calculation of the B8↔B2 phase boundary in FeO at Earth's core pressures. We show that fully anharmonic free energies computed with the Perdew-Burke-Ernzerhof-generalized gradient approximation coupled with thermal electronic excitations reproduce the experimental phase boundary within uncertainties at P > 255 GPa, including the largely negative Clapeyron slope of -52 MPa/K. This study validates the applicability of a standard density functional theory functional to FeO under Earth's core conditions and demonstrates the theoretical framework that enables complex predictive studies of this region.

15.
Proc Natl Acad Sci U S A ; 120(25): e2216206120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307441

ABSTRACT

Recurrent miscarriage (RM) is a distressing pregnancy complication. While the etiology of RM remains unclear, growing evidence has indicated the relevance of trophoblast impairment to the pathogenesis of RM. PR-SET7 is the sole enzyme catalyzing monomethylation of H4K20 (H4K20me1) and has been implicated in many pathophysiological processes. However, how PR-SET7 functions in trophoblasts and its relevance to RM remain unknown. Here, we found that trophoblast-specific loss of Pr-set7 in mice led to defective trophoblasts, resulting in early embryonic loss. Mechanistic analysis revealed that PR-SET7 deficiency in trophoblasts derepressed endogenous retroviruses (ERVs), leading to double-stranded RNA stress and subsequent viral mimicry, which drove overwhelming interferon response and necroptosis. Further examination discovered that H4K20me1 and H4K20me3 mediated the inhibition of cell-intrinsic expression of ERVs. Importantly, dysregulation of PR-SET7 expression and the corresponding aberrant epigenetic modifications were observed in the placentas of RM. Collectively, our results demonstrate that PR-SET7 acts as an epigenetic transcriptional modulator essential for repressing ERVs in trophoblasts, ensuring normal pregnancy and fetal survival, which sheds new light on potential epigenetic causes contributing to RM.


Subject(s)
Abortion, Habitual , Endogenous Retroviruses , Female , Pregnancy , Humans , Animals , Mice , Trophoblasts , Necroptosis , Placenta
16.
FASEB J ; 38(1): e23390, 2024 01.
Article in English | MEDLINE | ID: mdl-38169064

ABSTRACT

Lymph node metastasis (LNM) is one of the common features of oral tongue squamous cell carcinoma (OTSCC). LNM is also taken as a sign of advanced OTSCC and poor survival rate. Recently, single-cell RNA sequencing has been applied in investigating the heterogeneity of tumor microenvironment and discovering the potential biomarkers for helping the diagnosis and prognosticating. Pathogenesis of LNM in OTSCC remains unknown. Specifically, cancer-associated fibroblasts (CAFs) and epithelial tumor cells could foster the progression of tumors. Thus, in this study, we aimed to comprehensively analyze the roles of subpopulations of CAFs and epithelial tumor cells in lymph node metastatic OTSCC using the integration of OTSCC single-cell RNA sequencing datasets. Four distinct subtypes of CAFs, namely vascular CAFs, myofibroblast CAFs, inflammatory CAFs, and growth arrest CAFs were successfully discovered in LNM tumor and confirmed the roles of GAS and PTN pathways in the progression of tumor metastasis. In addition, NKAIN2+ epithelial cells and FN1+ epithelial cells specifically exhibited an upregulation of PTN, NRG, MIF, and SPP1 signaling pathways in the metastatic OTSCC. In doing so, we put forth some potential biomarkers that could be utilized for the purpose of diagnosing and prognosticating OTSCC during its metastatic phase and tried to confirm by immunofluorescence assays.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Tongue Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/pathology , Fibroblasts/pathology , Epithelial Cells/pathology , Biomarkers , Lymphatic Metastasis/pathology , Head and Neck Neoplasms/pathology , Sequence Analysis, RNA , Tumor Microenvironment
17.
FASEB J ; 38(14): e23832, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39046354

ABSTRACT

This study aims to investigate the hypothesis that Yes-associated protein (YAP) significantly regulates antioxidant potential and anti-apoptosis in UVB-induced cataract by exploring the underlying molecular mechanisms. To investigate the association between YAP and cataract, various experimental techniques were employed, including cell viability assessment, Annexin V FITC/PI assay, measurement of ROS production, RT-PCR, Western blot assay, and Immunoprecipitation. UVB exposure on human lens epithelium cells (HLECs) reduced total and nuclear YAP protein expression, increased cleaved/pro-caspase 3 ratios, decreased cell viability, and elevated ROS levels compared to controls. Similar Western blot results were observed in in vivo experiments involving UVB-treated mice. YAP knockdown in vitro demonstrated a decrease in the protein expression of FOXM1, Nrf2, and HO-1, which correlated with the mRNA expression, accompanied by an increase in cell apoptosis, caspase 3 activation, and the release of ROS. Conversely, YAP overexpression mitigated these effects induced by UVB irradiation. Immunoprecipitation revealed a FOXM1-YAP interaction. Notably, inhibiting FOXM1 decreased Nrf2 and HO-1, activating caspase 3. Additionally, administering the ROS inhibitor N-acetyl-L-cysteine (NAC) effectively mitigated the apoptotic effects induced by oxidative stress from UVB irradiation, rescuing the protein expression levels of YAP, FOXM1, Nrf2, and HO-1. The initial findings of our study demonstrate the existence of a feedback loop involving YAP, FOXM1, Nrf2, and ROS that significantly influences the cell apoptosis in HLECs under UVB-induced oxidative stress.


Subject(s)
Apoptosis , Cataract , Forkhead Box Protein M1 , NF-E2-Related Factor 2 , Oxidative Stress , Ultraviolet Rays , YAP-Signaling Proteins , Apoptosis/radiation effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Ultraviolet Rays/adverse effects , Humans , Animals , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Mice , Cataract/etiology , Cataract/metabolism , Cataract/pathology , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Male , Signal Transduction , Mice, Inbred C57BL
18.
FASEB J ; 38(7): e23589, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572594

ABSTRACT

Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-ß signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , MicroRNAs/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic
19.
Cell ; 142(5): 737-48, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20813261

ABSTRACT

Bacterial mRNAs often contain leader sequences that respond to specific metabolites or ions by altering expression of the associated downstream protein-coding sequences. Here we report that the leader RNA of the Mg(2+) transporter gene mgtA of Salmonella enterica, which was previously known to function as a Mg(2+)-sensing riboswitch, harbors an 18 codon proline-rich open reading frame-termed mgtL-that permits intracellular proline to regulate mgtA expression. Interfering with mgtL translation by genetic, pharmacological, or environmental means was observed to increase the mRNA levels from the mgtA coding region. Substitution of the mgtL proline codons by other codons abolished the response to proline and to hyperosmotic stress but not to Mg(2+). Our findings show that mRNA leader sequences can consist of complex regulatory elements that utilize different mechanisms to sense separate signals and mediate an appropriate cellular response.


Subject(s)
5' Untranslated Regions , Adenosine Triphosphatases/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Regulatory Sequences, Ribonucleic Acid , Salmonella typhimurium/genetics , Base Sequence , Magnesium/metabolism , Molecular Sequence Data , Proline/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonella typhimurium/metabolism , Sequence Alignment , Transcription, Genetic
20.
Nature ; 573(7772): 139-143, 2019 09.
Article in English | MEDLINE | ID: mdl-31462771

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) has a critical role in regulating cell fate, inflammation and immunity1,2. Cytokines and growth factors activate STAT3 through kinase-mediated tyrosine phosphorylation and dimerization3,4. It remains unknown whether other factors promote STAT3 activation through different mechanisms. Here we show that STAT3 is post-translationally S-palmitoylated at the SRC homology 2 (SH2) domain, which promotes the dimerization and transcriptional activation of STAT3. Fatty acids can directly activate STAT3 by enhancing its palmitoylation, in synergy with cytokine stimulation. We further identified ZDHHC19 as a palmitoyl acyltransferase that regulates STAT3. Cytokine stimulation increases STAT3 palmitoylation by promoting the association between ZDHHC19 and STAT3, which is mediated by the SH3 domain of GRB2. Silencing ZDHHC19 blocks STAT3 palmitoylation and dimerization, and impairs the cytokine- and fatty-acid-induced activation of STAT3. ZDHHC19 is frequently amplified in multiple human cancers, including in 39% of lung squamous cell carcinomas. High levels of ZDHHC19 correlate with high levels of nuclear STAT3 in patient samples. In addition, knockout of ZDHHC19 in lung squamous cell carcinoma cells significantly blocks STAT3 activity, and inhibits the fatty-acid-induced formation of tumour spheres as well as tumorigenesis induced by high-fat diets in an in vivo mouse model. Our studies reveal that fatty-acid- and ZDHHC19-mediated palmitoylation are signals that regulate STAT3, which provides evidence linking the deregulation of palmitoylation to inflammation and cancer.


Subject(s)
Acyltransferases/metabolism , Fatty Acids/metabolism , Lipoylation , Lung Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Acyltransferases/deficiency , Animals , Carcinogenesis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Conserved Sequence , Cysteine/metabolism , Disease Models, Animal , Heterografts , Humans , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Lung Neoplasms/pathology , Mice , Mice, SCID , Neoplasm Transplantation , Phosphorylation , Protein Multimerization , STAT3 Transcription Factor/chemistry , Signal Transduction , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL