Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.416
Filter
Add more filters

Publication year range
1.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
2.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31732166

ABSTRACT

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Subject(s)
Disease Susceptibility , Macrophages/immunology , Macrophages/metabolism , Animals , Biomarkers , Cell Count , Disease Susceptibility/immunology , ErbB Receptors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Ischemia/etiology , Ischemia/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice , Muscle Cells/immunology , Muscle Cells/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/pathology
3.
PLoS Pathog ; 19(8): e1011580, 2023 08.
Article in English | MEDLINE | ID: mdl-37566637

ABSTRACT

The multigene family genes (MGFs) in the left variable region (LVR) of the African swine fever virus (ASFV) genome have been reported to be involved in viral replication in primary porcine alveolar macrophages (PAMs) and virulence in pigs. However, the exact functions of key MGFs in the LVR that regulate the replication and virulence of ASFV remain unclear. In this study, we identified the MGF300-2R gene to be critical for viral replication in PAMs by deleting different sets of MGFs in the LVR from the highly virulent strain ASFV HLJ/18 (ASFV-WT). The ASFV mutant lacking the MGF300-2R gene (Del2R) showed a 1-log reduction in viral titer, and induced higher IL-1ß and TNF-α production in PAMs than did ASFV-WT. Mechanistically, the MGF300-2R protein was found to interact with and degrade IKKα and IKKß via the selective autophagy pathway. Furthermore, we showed that MGF300-2R promoted the K27-linked polyubiquitination of IKKα and IKKß, which subsequently served as a recognition signal for the cargo receptor TOLLIP-mediated selective autophagic degradation. Importantly, Del2R exhibited a significant reduction in both replication and virulence compared with ASFV-WT in pigs, likely due to the increased IL-1ß and TNF-α, indicating that MGF300-2R is a virulence determinant. These findings reveal that MGF300-2R suppresses host innate immune responses by mediating the degradation of IKKα and IKKß, which provides clues to paving the way for the rational design of live attenuated vaccines to control ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Virulence , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macrophages , Protein Serine-Threonine Kinases/metabolism , Autophagy
4.
Nucleic Acids Res ; 51(9): 4223-4236, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36484109

ABSTRACT

Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.


Subject(s)
RNA Polymerase III , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Initiation, Genetic , Protein Binding , Protein Domains , RNA Polymerase III/chemistry , RNA Polymerase III/metabolism , RNA, Transfer/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 119(19): e2201288119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35507870

ABSTRACT

African swine fever virus (ASFV) is the causative agent of African swine fever, a highly contagious and usually fatal disease in pigs. The pathogenesis of ASFV infection has not been clearly elucidated. Here, we used single-cell RNA-sequencing technology to survey the transcriptomic landscape of ASFV-infected primary porcine alveolar macrophages. The temporal dynamic analysis of viral genes revealed increased expression of viral transmembrane genes. Molecular characteristics in the ASFV-exposed cells exhibited the activation of antiviral signaling pathways with increased expression levels of interferon-stimulated genes and inflammatory- and cytokine-related genes. By comparing infected cells with unexposed cells, we showed that the unfolded protein response (UPR) pathway was activated in low viral load cells, while the expression level of UPR-related genes in high viral load cells was less than that in unexposed cells. Cells infected with various viral loads showed signature transcriptomic changes at the median progression of infection. Within the infected cells, differential expression analysis and coregulated virus­host analysis both demonstrated that ASFV promoted metabolic pathways but inhibited interferon and UPR signaling, implying the regulation pathway of viral replication in host cells. Furthermore, our results revealed that the cell apoptosis pathway was activated upon ASFV infection. Mechanistically, the production of tumor necrosis factor alpha (TNF-α) induced by ASFV infection is necessary for cell apoptosis, highlighting the importance of TNF-α in ASFV pathogenesis. Collectively, the data provide insights into the comprehensive host responses and complex virus­host interactions during ASFV infection, which may instruct future research on antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever Virus/genetics , Animals , Antiviral Agents/metabolism , Gene Expression Profiling , Macrophages/metabolism , Swine , Virus Replication/physiology
6.
Proc Natl Acad Sci U S A ; 119(8)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35181607

ABSTRACT

Interface phonon modes that are generated by several atomic layers at the heterointerface play a major role in the interface thermal conductance for nanoscale high-power devices such as nitride-based high-electron-mobility transistors and light-emitting diodes. Here we measure the local phonon spectra across AlN/Si and AlN/Al interfaces using atomically resolved vibrational electron energy-loss spectroscopy in a scanning transmission electron microscope. At the AlN/Si interface, we observe various interface phonon modes, of which the extended and localized modes act as bridges to connect the bulk AlN modes and bulk Si modes and are expected to boost the phonon transport, thus substantially contributing to interface thermal conductance. In comparison, no such phonon bridge is observed at the AlN/Al interface, for which partially extended modes dominate the interface thermal conductivity. This work provides valuable insights into understanding the interfacial thermal transport in nitride semiconductors and useful guidance for thermal management via interface engineering.

7.
J Biol Chem ; 299(11): 105347, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838171

ABSTRACT

The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Viral Envelope Proteins , Viral Tropism , Animals , Mice , Genomics , Herpesvirus 1, Suid/genetics , Mutagenesis , Mutation , Pseudorabies/genetics , Swine , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
8.
Am J Physiol Endocrinol Metab ; 326(1): E1-E13, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37938178

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.


Subject(s)
Adenosine , RNA Processing, Post-Transcriptional , Adenosine/genetics , Adenosine/metabolism , Homeostasis , Glucose/metabolism
9.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954022

ABSTRACT

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Subject(s)
Coculture Techniques , Lymphocytes, Tumor-Infiltrating , Organoids , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Organoids/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology
10.
J Virol ; 97(10): e0082423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37724880

ABSTRACT

IMPORTANCE: African swine fever (ASF) is an acute, hemorrhagic, and severe porcine infectious disease caused by African swine fever virus (ASFV). ASF outbreaks severely threaten the global pig industries and result in serious economic losses. No safe and efficacious commercial vaccine is currently available except in Vietnam. To date, large gaps in the knowledge concerning viral biological characteristics and immunoevasion strategies have hindered the ASF vaccine design. In this study, we demonstrate that pD129L negatively regulates the type I interferon (IFN) signaling pathway by interfering with the interaction of the transcriptional coactivator p300 and IRF3, thereby inhibiting the induction of type I IFNs. This study reveals a novel immunoevasion strategy employed by ASFV, shedding new light on the intricate mechanisms for ASFV to evade the host immune responses.


Subject(s)
African Swine Fever Virus , African Swine Fever , E1A-Associated p300 Protein , Interferon Regulatory Factor-3 , Interferon Type I , Animals , African Swine Fever/virology , Interferon Type I/metabolism , Interferon-beta/metabolism , Swine , Transcription Factors/metabolism , Vaccines/metabolism , E1A-Associated p300 Protein/metabolism , Interferon Regulatory Factor-3/metabolism , Immune Evasion
11.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38386917

ABSTRACT

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

12.
Nat Mater ; 22(10): 1253-1260, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604908

ABSTRACT

Hydrogel materials show promise for diverse applications, particular as biocompatible materials due to their high water content. Despite advances in hydrogel technology in recent years, their application is often severely limited by inadequate mechanical properties and time-consuming fabrication processes. Here we report a rapid hydrogel preparation strategy that achieves the simultaneous photo-crosslinking and establishment of biomimetic soft-hard material interface microstructures. These biomimetic interfacial-bonding nanocomposite hydrogels are prepared within seconds and feature clearly separated phases but have a strongly bonded interface. Due to effective interphase load transfer, biomimetic interfacial-bonding nanocomposite gels achieve an ultrahigh toughness (138 MJ m-3) and exceptional tensile strength (15.31 MPa) while maintaining a structural stability that rivals or surpasses that of commonly used elastomer (non-hydrated) materials. Biomimetic interfacial-bonding nanocomposite gels can be fabricated into arbitrarily complex structures via three-dimensional printing with micrometre-level precision. Overall, this work presents a generalizable preparation strategy for hydrogel materials and acrylic elastomers that will foster potential advances in soft materials.

13.
New Phytol ; 241(4): 1676-1689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044709

ABSTRACT

In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Transcriptome , Plastids/metabolism , Gene Expression Regulation, Plant
14.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228875

ABSTRACT

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Subject(s)
Iron-Sulfur Proteins , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Dystrophies , Oxidoreductases Acting on CH-NH Group Donors , Humans , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/therapeutic use , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Riboflavin/genetics , Riboflavin/metabolism , Riboflavin/therapeutic use
15.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461410

ABSTRACT

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-kit , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual/genetics , Pathologic Complete Response , Prognosis , Recurrence , RUNX1 Translocation Partner 1 Protein/genetics , Translocation, Genetic , Proto-Oncogene Proteins c-kit/genetics
16.
J Vasc Interv Radiol ; 35(4): 611-617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171414

ABSTRACT

PURPOSE: To establish an animal model for in-stent restenosis (ISR) after postthrombotic iliac vein stent placement and characterize histopathological changes in tissue within the stented vein. MATERIALS AND METHODS: Iliac vein thrombosis was induced using balloon occlusion and thrombin injection in 8 male Boer goats. Mechanical thrombectomy and iliac vein stent placement were performed 3 days after thrombosis induction. Restenosis was evaluated by venography and optical coherence tomography (OCT) at 1 and 8 weeks after stent placement, and stent specimens were taken for pathological examination after the animals were euthanized. RESULTS: Thrombosis induction was successful in all 8 goats, with >80% iliac vein occlusion. After thrombus removal, OCT revealed considerable venous intimal thickening and a small number of mural thrombi. Neointimal hyperplasia with thrombus formation was observed in all goats 1 week after stent implantation; the degree of ISR was 15%-33%. At 8 weeks, the degree of ISR was 21%-32% in 3 goats, and stent occlusion was observed in 1 goat. At 1 week, the neointima predominantly consisted of fresh thrombi. At 8 weeks, proliferplastic fibrotic tissue and smooth muscle cells (SMCs) were predominant, and the stent surfaces were endothelialized in 2 of 3 goats and partially endothelialized in 1 goat. CONCLUSIONS: In the goat model, postthrombotic neointimal hyperplasia in the venous stent may result from time-dependent thrombus formation and organization, accompanied by migration and proliferation of SMCs, causing ISR. These results provide a basis to further explore the mechanism of venous ISR and promote the development of venous stents that reduce neointimal hyperplasia.


Subject(s)
Coronary Restenosis , Venous Thrombosis , Animals , Male , Iliac Vein/diagnostic imaging , Iliac Vein/surgery , Iliac Vein/pathology , Coronary Restenosis/pathology , Goats , Hyperplasia/pathology , Stents , Neointima/pathology , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/therapy
17.
Cell Biol Toxicol ; 40(1): 16, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38472656

ABSTRACT

Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1ß and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1ß. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.


Subject(s)
Intervertebral Disc Degeneration , Mitophagy , Animals , Humans , Rats , Activating Transcription Factors/metabolism , Activating Transcription Factors/pharmacology , Apoptosis , Cyclic AMP Response Element-Binding Protein/metabolism , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Protein Kinases/metabolism , Quality of Life , Rats, Sprague-Dawley
18.
Nature ; 556(7700): 255-258, 2018 04.
Article in English | MEDLINE | ID: mdl-29618817

ABSTRACT

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Subject(s)
Alphacoronavirus/isolation & purification , Alphacoronavirus/pathogenicity , Animal Diseases/epidemiology , Animal Diseases/virology , Chiroptera/virology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine/virology , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animal Diseases/transmission , Animals , Biodiversity , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Diarrhea/pathology , Diarrhea/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral/genetics , Humans , Jejunum/pathology , Jejunum/virology , Phylogeny , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/veterinary , Severe Acute Respiratory Syndrome/virology , Spatio-Temporal Analysis , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
19.
Environ Res ; 241: 117565, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37972810

ABSTRACT

Changes in precipitation patterns can significantly affect belowground processes. Although soil extracellular enzymes play a vital role in several biogeochemical processes, our knowledge of how precipitation changes affect soil extracellular enzyme activity (EEA) and stoichiometry remains insufficient. In this study, we investigated the activities of C-acquiring enzyme (ß-1,4-glucosidase), N-acquiring enzymes (ß-N-acetylglucosaminidase and leucine aminopeptidase), and P-acquiring enzyme (acid phosphatase) under different precipitation scenarios [ambient precipitation (CK), 30% decrease in precipitation (moderate DPT), 50% decrease in precipitation (extreme DPT), 30% increase in precipitation (moderate IPT), and 50% increase in precipitation (extreme IPT)] in a poplar plantation. We found soil EEA exhibited more pronounced increases to moderate IPT compared to moderate DPT (positive asymmetry), the opposite trend (negative asymmetry) was observed under extreme precipitation; whereas soil EEA C:N:P stoichiometry exhibited negative asymmetry at moderate precipitation changes, and exhibited positive asymmetry at extreme precipitation changes. Under moderate precipitation changes, the asymmetry of soil EEA was mainly regulated by asymmetries of respective microbial biomass and litter mass; the asymmetry of soil EEA stoichiometry was mainly regulated by asymmetries of respective soil stoichiometric ratios and litter mass. Furthermore, under extreme precipitation changes, the asymmetries of soil EEA and stoichiometry were best explained by the asymmetry of soil moisture. Our results provide the first evidence of double asymmetric responses of soil EEA and stoichiometry to precipitation changes and highlight the need to consider this asymmetry when modeling the dynamics of biogeochemical cycling in forest ecosystems.


Subject(s)
Ecosystem , Soil , Soil Microbiology , Biomass , Forests , Nitrogen , Carbon
20.
Cell Mol Biol Lett ; 29(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172714

ABSTRACT

BACKGROUND: The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS: R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS: MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION: This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Lymphoma, Large B-Cell, Diffuse , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Promoter Regions, Genetic , Lymphoma, Large B-Cell, Diffuse/genetics , Hematopoiesis , Cell Line, Tumor , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL