Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-39236291

ABSTRACT

Pulmonary hypertension (PH) is a life-threatening syndrome associated with hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which exhibit similar features to cancer cells. Currently, there is no curative treatment for PH. LKB1 is known as a tumor suppressor gene with an anti-proliferative effect on cancer cells. However, its role and mechanism in the development of PH remain unclear. Gain-and loss-of-function strategies were used to elucidate the mechanisms of LKB1 in regulating the occurrence and progression of PH. Sugen5416/Hypoxia (SuHx) PH model was utilized for in vivo study. We observed not only a decreased expression of LKB1 in the lung vessels of the SuHx mouse model, but also in human pulmonary artery smooth muscle cells (HPASMCs) exposed to hypoxia. Smooth muscle-specific LKB1 knockout significantly aggravated SuHx-induced PH in mice. RNA sequencing analysis revealed a substantial increase in bone morphogenetic protein-4 (BMP4) in the aortas of LKB1SMKO mice compared with controls, identifying BMP4 as a novel target of LKB1. LKB1 knockdown in HPASMCs cultured under hypoxic conditions increased BMP4 protein level and HPASMC proliferation and migration. The co-immunoprecipitation analysis revealed that LKB1 directly modulates BMP4 protein degradation through phosphorylation. Therapeutically, suppressing BMP4 expression in SMCs alleviates PH in LKB1SMKO mice. Our findings demonstrate that LKB1 attenuates PH by enhancing the lysosomal degradation of BMP4, thus suppressing the proliferation and migration of HPASMCs. Modulating LKB1-BMP4 axis in SMC could be a promising therapeutic strategy of PH.

2.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844963

ABSTRACT

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Subject(s)
Breast Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Methyltransferases , RNA Stability , Y-Box-Binding Protein 1 , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
3.
Crit Rev Eukaryot Gene Expr ; 34(5): 31-43, 2024.
Article in English | MEDLINE | ID: mdl-38842202

ABSTRACT

Breast cancer is one of the most common malignant tumors worldwide. SLC7A2 is abnormally expressed in multiple cancers. However, its potential in triple negative breast cancer (TNBC) is still unclear. The purpose of this study was to investigate the roles of SLC7A2 and its underlying molecular mechanisms in TNBC. mRNA expression was detected by RT-qPCR. Protein expression was detected by western blot. Co-localization of ACOX1 and TCF1 was determined using FISH assay. Histone crotonylation was performed using in vitro histone crotonylation assay. Functional analysis was performed using CCK-8 and flow cytometry assays. Xenograft assay was conducted to further verify the role of SLC7A2 in TNBC. CD8A expression was detected using immunohistochemistry. We found that SLC7A2 is downregulated in TNBC tumors. Low levels are associated with advanced stages and lymph node metastasis. SLC7A2 expression is positively correlated with CD8A. SLC7A2-mediated lysine catabolism drives the activation of CD8+ T cells. Moreover, SLC7A2 promotes histone crotonylation via upregulating ACOX1. It also promotes interaction between ACOX1 and TCF1, thus promoting antitumor T cell immunity. Additionally, overexpression of SLC7A2 activates CD8+ T cells and enhances the chemosensitivity of anti-PD-1 therapies in vivo. In conclusion, SLC7A2 may function as an antitumor gene in TNBC by activating antitumor immunity, suggesting SLC7A2/ACOX1/TCF1 signaling as a promising therapeutic strategy.


Subject(s)
Lysine , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Lysine/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
4.
Anal Chem ; 96(35): 14230-14238, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39172624

ABSTRACT

Activatable photosensitizers (PSs) generating 1O2 only under specific conditions can minimize concomitant injury to normal tissues. Heavy-atom-free PSs hold the merits of low dark toxicity, long triplet-state lifetimes, good photostability, and relatively low cost. PSs with emission in the second near-infrared (NIR-II) window are highly valuable for deep-tissue, high-contrast imaging. Herein, we have designed and synthesized a series of heavy-atom-free PSs by a one-step reaction between an easily accessible rhodamine derivative and commercially available thiophene aldehydes. One of the as-prepared PSs, 2b-3T, exhibits emission maxima at 810 nm and tails to the NIR-II region at 1140 nm, together with large Stokes shift (178 nm). Importantly, the newly developed PSs, featuring functional carboxylic acid groups, present promising opportunities as versatile platforms for creating activatable PSs. To validate our concept, we developed Cu2+/pH-activatable PSs using the spirocyclization mechanism of rhodamine. Ultimately, we showcased the effectiveness of these innovative PSs in photodynamic therapy through in vitro experiments.


Subject(s)
Infrared Rays , Photosensitizing Agents , Rhodamines , Photosensitizing Agents/chemistry , Rhodamines/chemistry , Humans , Photochemotherapy , Molecular Structure , Cell Survival/drug effects , HeLa Cells , Copper/chemistry
5.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38386917

ABSTRACT

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

6.
Chemistry ; 30(8): e202303524, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37965774

ABSTRACT

Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti3 C2 Tx MXene (RuCo-Ti3 C2 Tx ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti3 C2 Tx not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.8 mV dec-1 in 0.5 M H2 SO4 and 52 mV, 38.7 mV dec-1 in 1 M KOH), but also good oxygen evolution reaction (OER) performance in an alkaline electrolyte (266 mV, 111.1 mV dec-1 in 1 M KOH). The assembled RuCo-Ti3 C2 Tx ||RuCo-Ti3 C2 Tx electrolyzer requires a lower potential (1.56 V) than does the Pt/C||RuO2 electrolyzer at 10 mA cm-2 . A boosted catalytic HER activity from immobilizing the RuCo nanoalloys on MXene was unveiled by density functional theory calculations. This study provides a feasible and efficient strategy for developing MXene-based catalysts for overall water splitting.

7.
Reprod Biol Endocrinol ; 22(1): 96, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097723

ABSTRACT

BACKGROUND: Dual-person inspection in IVF laboratories cannot fully avoid mix-ups or embryo transfer errors, and data transcription or entry is time-consuming and redundant, often leading to delays in completing medical records. METHODS: This study introduced a workflow-based RFID tag witnessing and real-time information entry platform for addressing these challenges. To assess its potential in reducing mix-ups, we conducted a simulation experiment in semen preparation to analyze its error correction rate. Additionally, we evaluated its impact on work efficiency, specifically in operation and data entry. Furthermore, we compared the cycle costs between paper labels and RFID tags. Finally, we retrospectively analyzed clinical outcomes of 20,424 oocyte retrieval cycles and 15,785 frozen embryo transfer cycles, which were divided into paper label and RFID tag groups. RESULTS: The study revealed that comparing to paper labels, RFID tag witnessing corrected 100% of tag errors, didn't affect gamete/embryo operations, and notably shorten the time of entering data, but the cycle cost of RFID tags was significantly higher. However, no significant differences were observed in fertilization, embryo quality, blastocyst rates, clinical pregnancy, and live birth rates between two groups. CONCLUSIONS: RFID tag witnessing doesn't negatively impact gamete/embryo operation, embryo quality and pregnancy outcomes, but it potentially reduces the risk of mix-ups or errors. Despite highly increased cost, integrating RFID tag witnessing with real-time information entry can remarkably decrease the data entry time, substantially improving the work efficiency. This workflow-based management platform also enhances operational safety, ensures medical informational integrity, and boosts embryologist's confidence.


Subject(s)
Embryo Transfer , Fertilization in Vitro , Radio Frequency Identification Device , Workflow , Humans , Female , Fertilization in Vitro/methods , Pregnancy , Retrospective Studies , Embryo Transfer/methods , Radio Frequency Identification Device/methods , Laboratories , Adult , Male , Pregnancy Rate , Pregnancy Outcome
8.
Am J Obstet Gynecol ; 231(1): 36-50.35, 2024 07.
Article in English | MEDLINE | ID: mdl-38191020

ABSTRACT

OBJECTIVE: This study aimed to determine the efficacy and safety of hyaluronic acid gel for the prevention of intrauterine adhesions and improved fertility after intrauterine surgery. DATA SOURCES: PubMed, EMBASE, Cochrane Library, Web of science, and ClinicalTrials.gov were searched up to November 1, 2023. STUDY ELIGIBILITY CRITERIA: Randomized controlled trials that reported intrauterine adhesion and fertility outcomes among women who used hyaluronic acid after intrauterine surgery. METHODS: The risk of bias was assessed using criteria of the Cochrane Handbook, and the quality of the evidence was evaluated using the Grades of Recommendation, Assessment, Development, and Evaluation system. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. A trial sequential analysis was conducted to assess the outcomes, and Stata 14 was used for sensitivity analyses and publication bias analyses. RESULTS: Data from 16 randomized controlled trials involving 2359 patients were extracted and analyzed. The analysis revealed that hyaluronic acid reduced the incidence of intrauterine adhesion (risk ratio, 0.53; 95% confidence interval, 0.42-0.67; I2=48%) and improve pregnancy rates (risk ratio, 1.24; 95% confidence interval, 1.02-1.50; I2=0%). A subgroup analysis was conducted to evaluate factors that influence the effect of hyaluronic acid on the incidence of intrauterine adhesion. It was found that a small volume of hyaluronic acid reduced the incidence of intrauterine adhesions. Hyaluronic acid exhibited a protective effect among patients who underwent various intrauterine surgeries and who had different gynecologic medical histories. The protective effect was statistically significant after a follow-up of 6 to 12 weeks. The results of the trial sequential analysis indicated that the effect of hyaluronic acid on the incidence of mild intrauterine adhesions, pregnancy rates, live birth rates, and miscarriage rates after intrauterine surgery may be inconclusive and thus further evaluation is required in the form of additional clinical trials. However, the remaining effects were found to be verifiable and did not require more clinical trials for confirmation. CONCLUSION: Hyaluronic acid can safely and effectively reduce the incidence of intrauterine adhesions and may improve fertility outcomes.


Subject(s)
Hyaluronic Acid , Pregnancy Rate , Randomized Controlled Trials as Topic , Uterine Diseases , Hyaluronic Acid/therapeutic use , Humans , Tissue Adhesions/prevention & control , Tissue Adhesions/etiology , Female , Pregnancy , Uterine Diseases/prevention & control , Uterine Diseases/surgery , Gels , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , Infertility, Female/prevention & control , Fertility/drug effects , Viscosupplements/therapeutic use , Viscosupplements/administration & dosage
9.
Xenotransplantation ; 31(4): e12873, 2024.
Article in English | MEDLINE | ID: mdl-38961605

ABSTRACT

BACKGROUND: Significant progress has been made in kidney xenotransplantation in the past few years, and this field is accelerating towards clinical translation. Therefore, surveillance of the xenograft with appropriate tools is of great importance. Ultrasonography has been widely used in kidney allotransplantation and served as an economical and non-invasive method to monitor the allograft. However, questions remain whether the ultrasonographic criteria established for human kidney allograft could also be applied in xenotransplantation. METHODS: In the current study, we established a porcine-rhesus life sustaining kidney xenotransplantation model. The xenograft underwent intensive surveillance using gray-scale, colorful Doppler ultrasound as well as 2D shear wave elastography. The kidney growth, blood perfusion, and cortical stiffness were measured twice a day. These parameters were compared with the clinical data including urine output, chemistry, and pathological findings. RESULTS: The observation continued for 16 days after transplantation. Decline of urine output and elevated serum creatinine were observed on POD9 and biopsy proven antibody-mediated rejection was seen on the same day. The xenograft underwent substantial growth, with the long axis length increased by 32% and the volume increased by threefold at the end of observation. The resistive index of the xenograft arteries elevated in response to rejection, together with impaired cortical perfusion, while the peak systolic velocity (PSV) was not compromised. The cortical stiffness also increased along with rejection. CONCLUSION: In summary, the ultrasound findings of kidney xenograft shared similarities with those in allograft but possessed some unique features. A modified criteria needs to be established for further application of ultrasound in kidney xenotransplantation.


Subject(s)
Graft Rejection , Heterografts , Kidney Transplantation , Kidney , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Kidney Transplantation/methods , Swine , Kidney/diagnostic imaging , Humans , Ultrasonography/methods
10.
J Org Chem ; 89(1): 605-616, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38096545

ABSTRACT

Heterobimetallic complexes have recently garnered considerable attention in organic synthesis owing to their high activity and selectivity, which surpass those of monometallic complexes. In this study, the detailed mechanisms of terminal alkyne dimerization activated by the heterobimetallic Zr/Co complex, as well as the different stereoselectivities of Me3SiC≡CH and PhC≡CH dimerization, were investigated and elucidated by using density functional theory calculations. After excluding the three-molecule reaction and outer-sphere mechanisms, the inner-sphere mechanism was determined as the most optimal process. The inner-sphere mechanism involves four processes: THF dissociation and coordination of the first alkyne; ligand migration and C-H activation; N2 dissociation and insertion of the second alkyne; and reductive elimination. The stereoselectivity between the E-/Z- and gem-isomers is determined by the C-C coupling mode of the two alkynes and that of the E- and Z-isomers is determined by the sequence of the C-C coupling and hydrogen migration in the reductive elimination process. Me3SiC≡CH dimerization yields only an E-isomer owing to the large differences in the distortion and interaction energies, whereas PhC≡CH dimerization produces an E-, Z-, and gem-isomers owing to the reduced interaction energy differences.

11.
J Org Chem ; 89(17): 12832-12841, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39119659

ABSTRACT

A cascade oxidation/Pictet-Spengler condensation/annulation process has been developed for the one-pot total synthesis of nitramarine, nitraridine, and their analogues. The procedure proceeded with easily available quinolines and tryptophan derivatives. A simple and metal-free approach, wide substrate scope, and functional group tolerance make it applicable for the synthesis of diverse bioactive nitramarine, nitraridine, and their derivatives. Furthermore, the bioactivity evaluation has identified two promising leading compounds 5d and 5e with potent antitumor proliferative activity against breast cancer cells.


Subject(s)
Biological Products , Oxidation-Reduction , Biological Products/chemical synthesis , Biological Products/chemistry , Humans , Molecular Structure , Cell Proliferation/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Quinolines/chemistry , Quinolines/chemical synthesis , Drug Screening Assays, Antitumor
12.
Inorg Chem ; 63(28): 13059-13067, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38937959

ABSTRACT

Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Iridium , Microbial Sensitivity Tests , Photochemotherapy , Photosensitizing Agents , Rhodamines , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Rhodamines/chemistry , Rhodamines/pharmacology , Iridium/chemistry , Iridium/pharmacology , Gram-Positive Bacteria/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Animals , Infrared Rays , Molecular Structure , Mice
13.
Phys Chem Chem Phys ; 26(40): 25788-25797, 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39377172

ABSTRACT

In fullerene chemistry, Diels-Alder cycloaddition is an essential reaction for exohedral modification of carbon cages. M@C2v(9)-C82 (M = Sc, Y, and La), incorporating one metal atom within the fullerene cage, are key compounds for understanding the impact of both endohedral and exohedral modifications on their electronic structures. In this work, the Diels-Alder (DA) cycloaddition of cyclopentadiene (Cp) to M@C2v(9)-C82 (M = Sc, Y, and La) and La@C2(10612)-C72 was systematically studied using density functional theory. The most reactive bonds were initially chosen for detailed mechanistic exploration, considering both concerted and stepwise mechanisms. Our findings revealed that DA cycloadditions for the three metals (Sc, Y, and La) consistently exhibit the same regioselectivity, favoring the concerted attack on the [5,6] bond. This observation is in agreement with previous experimental and theoretical studies on the regioselectivity of the Diels-Alder reaction between La@C2v(9)-C82 and Cp. In the case of La@C2(10612)-C72, the most favored pathway is the concerted attack on the [6,6] bond both kinetically and thermodynamically. In toluene and ortho-dichlorobenzene, while the energy barriers and the reaction free energies increased to different extents for most pathways, the regioselectivity largely mirrored that observed in the gas phase.

14.
BMC Cardiovasc Disord ; 24(1): 418, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135154

ABSTRACT

BACKGROUND: Intravitreal injection of anti-vascular endothelial growth factor is considered the first-line treatment for polypoidal choroidal vasculopathy. It has potential risks for circulatory system, which should be particularly carefully evaluated in older patients. In this case study, we aim to discuss the potential impact of this treatment regimen on cardiac health. CASE PRESENTATION: This case report describes an elderly patient with no prior history of heart disease who exhibited unexpected heart enlargement and dysfunction. Throughout the patient's hospital stay, various potential causes were investigated, leading to the hypothesis that a 10-year history of intravitreal injections of anti-vascular endothelial growth factor could be related to the observed clinical manifestations. The patient was advised to discontinue this treatment, and after a 2-month follow-up period, there was a gradual improvement in the patient's cardiac structure and function. CONCLUSION: This manuscript highlights the importance of conducting cardiac examinations before and after anti-vascular endothelial growth factor treatment, especially for individuals at risk of heart diseases like the elderly. It emphasizes the need to carefully weigh the benefits and risks of treatment regimens to ensure optimal therapeutic outcomes.


Subject(s)
Angiogenesis Inhibitors , Heart Failure , Intravitreal Injections , Vascular Endothelial Growth Factor A , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Heart Failure/diagnosis , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/administration & dosage , Treatment Outcome , Male , Risk Factors , Aged , Female , Ranibizumab/adverse effects , Ranibizumab/administration & dosage , Aged, 80 and over , Cardiotoxicity , Bevacizumab/adverse effects , Bevacizumab/administration & dosage
15.
J Clin Periodontol ; 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39478364

ABSTRACT

AIM: This first randomized controlled trial in humans aimed to assess the efficacy and safety of low-dosage Escherichia coli-derived recombinant human bone morphogenetic protein 2 (ErhBMP-2)-incorporated biomimetic calcium phosphate coating-functionalized ß-TCP (ErhBMP-2/BioCaP/ß-TCP) as a novel bone substitute using the tooth-extraction-socket-healing model. MATERIALS AND METHODS: Forty patients requiring dental implants after single-root tooth extraction were enrolled in this study and randomly assigned into three groups: ErhBMP-2/BioCaP/ß-TCP (N = 15), ß-TCP (N = 15) and natural healing (N = 10). New bone volume density from histomorphometric analyses was evaluated 6 weeks post-operatively as the primary outcome, and other histomorphometric analyses, alveolar bone and soft-tissue changes were the secondary outcomes. Safety parameters included adverse events, soft-tissue healing, oral health impact profile, serum BMP-2 concentrations and other laboratory tests. RESULTS: The findings revealed a significant increase in new bone volume density in patients treated with ErhBMP-2/BioCaP/ß-TCP compared to those receiving ß-TCP alone. The required bone augmentation procedures during implant placement surgery in the ErhBMP-2/BioCaP/ß-TCP group were significantly less than in the natural healing group. There were no significant differences in safety parameters among the three groups. CONCLUSION: This clinical trial primarily proved the safety and efficacy of ErhBMP-2/BioCaP/ß-TCP as a promising bone substitute.

16.
Cell Mol Biol Lett ; 29(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172714

ABSTRACT

BACKGROUND: The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS: R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS: MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION: This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Lymphoma, Large B-Cell, Diffuse , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Promoter Regions, Genetic , Lymphoma, Large B-Cell, Diffuse/genetics , Hematopoiesis , Cell Line, Tumor , Nuclear Proteins/metabolism
17.
Lung ; 202(5): 673-681, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191908

ABSTRACT

BACKGROUND: Inhaled corticosteroids (ICS) are effective in managing asthma and chronic obstructive pulmonary disease (COPD) but increase the risk of pneumonia. Benzodiazepines (BZD), commonly prescribed for comorbid psychiatric disorders in asthma or COPD patients, are also associated with pneumonia. This study investigates the risk of pneumonia associated with the concomitant use of ICS and BZD. METHODS: Data from the FDA Adverse Event Reporting System from Q4 2013 to Q3 2023 were extracted. Reports involving asthma or COPD patients were included. Disproportionality analysis and logistic regression analysis were performed to assess the risk of pneumonia associated with the combined use of ICS and BZD. Additive and multiplicative models were used to further confirm the results. Additionally, subgroup analyses were conducted based on gender, age, and disease type. RESULTS: A total of 238,411 reports were included. The combined use of ICS and BZD was associated with a higher reporting of pneumonia (ROR: 2.41, 95% CI 2.25-2.58). Using additive and multiplicative methods, the results remained significant. The strongest risk signals were observed in specific drug combinations, such as mometasone with clonazepam, budesonide with temazepam, and mometasone with zopiclone. Subgroup analyses showed higher pneumonia risks in females, patients over 60 years old, and those with asthma. CONCLUSION: Our findings identified a significantly elevated pneumonia risk with the combined use of ICS and BZD. These results highlighted the necessity for cautious co-prescription of ICS and BZD and suggested the need for more comprehensive clinical studies to assess this interaction.


Subject(s)
Adrenal Cortex Hormones , Adverse Drug Reaction Reporting Systems , Asthma , Benzodiazepines , Pharmacovigilance , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Male , Female , Administration, Inhalation , Benzodiazepines/adverse effects , Benzodiazepines/administration & dosage , Middle Aged , Pneumonia/epidemiology , Pneumonia/chemically induced , Asthma/drug therapy , Asthma/epidemiology , Aged , Adult , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , United States/epidemiology , Young Adult , Adolescent , Risk Factors , Risk Assessment , Child , Drug Therapy, Combination , Aged, 80 and over , Clonazepam/adverse effects , Clonazepam/administration & dosage
18.
Intern Med J ; 54(8): 1292-1301, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38563467

ABSTRACT

BACKGROUND AND AIMS: Sleep-disordered breathing (SDB) and nocturnal hypoxemia were known to be present in patients with chronic thromboembolic pulmonary hypertension (CTEPH), but the difference between SDB and nocturnal hypoxemia in patients who have chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) at rest remains unknown. METHODS: Patients who had CTEPH (n = 80) or CTEPD without PH (n = 40) and who had undergone sleep studies from July 2020 to October 2022 at Shanghai Pulmonary Hospital were enrolled. Nocturnal mean SpO2 (Mean SpO2) <90% was defined as nocturnal hypoxemia, and the percentage of time with a saturation below 90% (T90%) exceeding 10% was used to evaluate the severity of nocturnal hypoxemia. Logistic and linear regression analyses were performed to investigate the difference and potential predictor of SDB or nocturnal hypoxemia between CTEPH and CTEPD without PH. RESULTS: SDB was similarly prevalent in CTEPH and CTEPD without PH (P = 0.104), both characterised by obstructive sleep apnoea (OSA). Twenty-two patients with CTEPH were diagnosed with nocturnal hypoxemia, whereas only three were diagnosed with CTEPD without PH (P = 0.021). T90% was positively associated with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance in patients with CTEPH and CTEPD without PH (P < 0.001); T90% was also negatively related to cardiac output in these patients. Single-breath carbon monoxide diffusing capacity, sex and mPAP were all correlated with nocturnal hypoxemia in CTEPH and CTEPD without PH (all P < 0.05). CONCLUSION: Nocturnal hypoxemia was worse in CTEPD with PH; T90%, but not SDB, was independently correlated with the hemodynamics in CTEPD with or without PH.


Subject(s)
Hypertension, Pulmonary , Hypoxia , Pulmonary Embolism , Sleep Apnea Syndromes , Humans , Female , Male , Middle Aged , Hypoxia/etiology , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , Aged , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/physiopathology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/complications , Chronic Disease , China/epidemiology , Polysomnography
19.
Nephrology (Carlton) ; 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39397324

ABSTRACT

INTRODUCTION: Autosomal recessive polycystic kidney disease (ARPKD) ranks among the most severe chronic kidney diseases (CKD). Its primary cause is variants in the Polycystic Kidney and Hepatic Disease 1 gene (PKHD1). The clinical spectrum of ARPKD varies widely, ranging from mild late-onset symptoms to severe perinatal mortality. However, achieving an early genetic diagnosis in ARPKD patients before clinical symptoms appear proves challenging. CASE PRESENTATION: This case is a 4-year-old boy who experienced a convulsion characterized by a generalized tonic attack lasting approximately 3-5 minutes and later sought treatment to our hospital. However, routine abdominal ultrasound examination accidentally detected that he had diffuse liver lesions, splenomegaly, and bilateral renal enlargement with renal pelvis dilation. Given the uncertainty regarding the underlying cause of the patient's structural abnormalities and convulsions, karyotyping, whole exome sequencing (WES), structural variant analysis (SV analysis) of whole genome sequencing (WGS) were recommended. The result of SV analysis revealed that he has an RBT impacting PKHD1 and the precise location of breakpoints was confirmed through Long-Range Polymerase Chain Reaction (LR-PCR). However, WES did not screen out pathogenic variants initially, the WES data was reviewed subsequently based on SV analysis results. CONCLUSION: We identified an infrequent variant combination, c.2507T>C (p.V836A) in PKHD1 and an RBT with broken PKHD1, which extends the genetic spectrum of ARPKD, and provide a basis for further genetic counselling to the family.

20.
Mar Drugs ; 22(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921547

ABSTRACT

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Subject(s)
Anti-Bacterial Agents , Penicillium , Staphylococcus aureus , Penicillium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Genomics/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Sensitivity Tests , Transcriptome , Arctic Regions , Siderophores/pharmacology , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL