Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Mol Pharmacol ; 88(6): 1011-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26438213

ABSTRACT

Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor. (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide inhibits both the kinase and RNase activities of IRE1α. The inhibitor interacts with the catalytic residues Lys599 and Glu612 and displaces the kinase activation loop to the DFG-out conformation. Inactivation of IRE1α RNase activity appears to be caused by a conformational change, whereby the αC helix is displaced, resulting in the rearrangement of the kinase domain-dimer interface and a rotation of the RNase domains away from each other. In contrast, staurosporine binds at the ATP-binding site of IRE1α, resulting in a dimer consistent with RNase active yeast Ire1 dimers. Activation of IRE1α RNase activity appears to be promoted by a network of hydrogen bond interactions between highly conserved residues across the RNase dimer interface that place key catalytic residues poised for reaction. These data implicate that the intermolecular interactions between conserved residues in the RNase domain are required for activity, and that the disruption of these interactions can be achieved pharmacologically by small molecule kinase domain inhibitors.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Endoribonucleases/metabolism , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Crystallization , Endoribonucleases/chemistry , Enzyme Activation/drug effects , Enzyme Activation/physiology , Humans , Protein Conformation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary
2.
Protein Expr Purif ; 97: 9-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24534072

ABSTRACT

The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.


Subject(s)
Baculoviridae/genetics , Pyruvate Dehydrogenase Complex/genetics , Sf9 Cells/metabolism , Animals , Cloning, Molecular , Gene Expression , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Pyruvate Dehydrogenase Complex/isolation & purification , Pyruvate Dehydrogenase Complex/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
3.
Biochemistry ; 52(26): 4563-77, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23731180

ABSTRACT

The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme.


Subject(s)
Brain Neoplasms/enzymology , Cytosol/enzymology , Isocitrate Dehydrogenase , Mutant Proteins , Brain Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Glutarates/chemistry , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Isocitrates/chemistry , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Kinetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation
4.
Prostaglandins Other Lipid Mediat ; 104-105: 25-31, 2013.
Article in English | MEDLINE | ID: mdl-23434473

ABSTRACT

Soluble epoxide hydrolase (sEH, EPHX2) metabolizes eicosanoid epoxides, including epoxyeicosatrienoic acids (EETs) to the corresponding dihydroxyeicosatrienoic acids (DHETs), and leukotoxin (LTX) to leukotoxin diol (LTX diol). EETs, endothelium-derived hyperpolarizing factors, exhibit potentially beneficial properties, including anti-inflammatory effects and vasodilation. A novel, potent, selective inhibitor of recombinant human, rat and mouse sEH, GSK2256294A, exhibited potent cell-based activity, a concentration-dependent inhibition of the conversion of 14,15-EET to 14,15-DHET in human, rat and mouse whole blood in vitro, and a dose-dependent increase in the LTX/LTX diol ratio in rat plasma following oral administration. Mice receiving 10 days of cigarette smoke exposure concomitant with oral administration of GSK2256294A exhibited significant, dose-dependent reductions in pulmonary leukocytes and keratinocyte chemoattractant (KC, CXCL1) levels. Mice receiving oral administration of GSK2256294A following 10 days of cigarette smoke exposure exhibited significant reductions in pulmonary leukocytes compared to vehicle-treated mice. These data indicate that GSK2256294A attenuates cigarette smoke-induced inflammation by both inhibiting its initiation and/or maintenance and promoting its resolution. Collectively, these data indicate that GSK2256294A would be an appropriate agent to evaluate the role of sEH in clinical studies, for example in diseases where cigarette smoke is a risk factor, such as chronic obstructive pulmonary disease (COPD) and cardiovascular disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclohexylamines/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Leukocytes/drug effects , Lung/drug effects , Triazines/pharmacology , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Administration, Oral , Adult , Animals , Chemokine CXCL1/biosynthesis , Dose-Response Relationship, Drug , Epoxide Hydrolases/metabolism , Exotoxins/metabolism , Female , Humans , Inflammation/enzymology , Inflammation/etiology , Inflammation/pathology , Inflammation/prevention & control , Leukocyte Count , Leukocytes/metabolism , Leukocytes/pathology , Lung/enzymology , Lung/pathology , Male , Mice , Mice, Knockout , Middle Aged , Oxidative Stress/drug effects , Rats , Stearic Acids/metabolism , Tobacco Smoke Pollution/adverse effects
5.
Biochem J ; 436(2): 363-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21410436

ABSTRACT

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Binding Sites , Humans , Hydroxylation , Isoenzymes/chemistry , Isoenzymes/metabolism , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/metabolism , Substrate Specificity
6.
Biochemistry ; 50(21): 4804-12, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21524095

ABSTRACT

Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.


Subject(s)
Glutarates/metabolism , Isocitrate Dehydrogenase/physiology , Mutation , Chromatography, High Pressure Liquid , Isocitrate Dehydrogenase/genetics , Models, Molecular , Mutagenesis , Tandem Mass Spectrometry
7.
Anal Biochem ; 415(1): 84-6, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21459076

ABSTRACT

Epigenetics is an area of increasing interest for drug discovery, driving the need for assays that use nucleosome substrates. Our studies showed that SUV39H1, a histone lysine methyltransferase, and Dnmt3b/Dnmt3L, a DNA methyltransferase, both exhibited approximately five times more activity on monomer nucleosomes than on DNA-core-trimmed nucleosomes in a scintillation proximity assay (SPA). The methyltransferases recognize and have a preference for nucleosomes with longer DNA strands. Our findings suggest that the use of monomer nucleosomes as substrates using SPA technology could lead to more robust screening assays and potentially more specific small molecule inhibitors of epigenetic enzymes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Nucleosomes/metabolism , Epigenomics , HeLa Cells , Humans , Substrate Specificity , DNA Methyltransferase 3B
9.
Nat Chem Biol ; 3(11): 722-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17922005

ABSTRACT

The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials. Mutations that attenuate ispinesib binding to KSP have been identified, which highlights the need for inhibitors that target different binding sites. We describe a new class of selective KSP inhibitors that are active against ispinesib-resistant forms of KSP. These ATP-competitive KSP inhibitors do not bind in the nucleotide binding pocket. Cumulative data from generation of resistant cells, site-directed mutagenesis and photo-affinity labeling suggest that they compete with ATP binding via a novel allosteric mechanism.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Kinases/chemistry , Protein Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line , Cell Survival/drug effects , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Protein Structure, Tertiary
10.
Bioorg Med Chem Lett ; 19(13): 3664-8, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19428244

ABSTRACT

Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer's disease. We have recently disclosed a series of transition-state mimetic BACE-1 inhibitors showing nanomolar potency in cell-based assays. Amongst them, GSK188909 (compound 2) had favorable pharmacokinetics and was the first orally bioavailable inhibitor reported to demonstrate brain amyloid lowering in an animal model. In this Letter, we describe the reasons that led us to favor a second generation of inhibitors for further in vivo studies.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemistry , Thiazines/chemistry , Administration, Oral , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Computer Simulation , Ethylamines/chemical synthesis , Ethylamines/chemistry , Ethylamines/pharmacology , Humans , Mice , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/pharmacokinetics
11.
Bioorg Med Chem Lett ; 19(13): 3669-73, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19477642

ABSTRACT

Our first generation of hydroxyethylamine transition-state mimetic BACE-1 inhibitors allowed us to validate BACE-1 as a key target for Alzheimer's disease by demonstrating amyloid lowering in an animal model, albeit at rather high doses. Finding a molecule from this series which was active at lower oral doses proved elusive and demonstrated the need to find a novel series of inhibitors with improved pharmacokinetics. This Letter describes the discovery of such inhibitors.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Ethylamines/chemistry , Protease Inhibitors/chemistry , Administration, Oral , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Computer Simulation , Crystallography, X-Ray , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Humans , Mice , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Rats , Structure-Activity Relationship , Thiazines/chemistry , Thiazines/pharmacology
12.
Bioorg Med Chem Lett ; 19(13): 3674-8, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19406640

ABSTRACT

Our first generation of hydroxyethylamine BACE-1 inhibitors proved unlikely to provide molecules that would lower amyloid in an animal model at low oral doses. This observation led us to the discovery of a second generation of inhibitors having nanomolar activity in a cell-based assay and with the potential for improved pharmacokinetic profiles. In this Letter, we describe our successful strategy for the optimization of oral bioavailability and also give insights into the design of compounds with the potential for improved brain penetration.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Ethylamines/chemistry , Protease Inhibitors/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Biological Availability , Dogs , Ethylamines/chemical synthesis , Ethylamines/pharmacokinetics , Mice , Mice, Knockout , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
13.
Biochemistry ; 47(43): 11165-7, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18834144

ABSTRACT

Prolyl hydroxylase domain proteins (PHD isozymes 1-3) regulate levels of the alpha-subunit of the hypoxia inducible factor (HIF) through proline hydroxylation, earmarking HIFalpha for proteosome-mediated degradation. Under hypoxic conditions, HIF stabilization leads to enhanced transcription and regulation of a multitude of processes, including erythropoiesis. Herein, we examine the biochemical characterization of PHD2 variants, Arg371His and Pro317Arg, identified from patients with familial erythrocytosis. The variants display differential effects on catalytic rate and substrate binding, implying that partial inhibition or selective inhibition with regard to HIFalpha isoforms of PHD2 could result in the phenotype displayed by patients with familial erythrocytosis.


Subject(s)
Genetic Variation , Polycythemia/genetics , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/genetics , Amino Acid Motifs , Amino Acid Substitution , Arginine/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Histidine/metabolism , Humans , Hydrogen Bonding , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Models, Molecular , Polycythemia/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proline/chemistry , Proline/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
15.
Bioorg Med Chem Lett ; 18(3): 1011-6, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18171614

ABSTRACT

Inhibition of the aspartyl protease BACE-1 has the potential to deliver a disease-modifying therapy for Alzheimer's disease. Herein, is described the lead generation effort which resulted, with the support of X-ray crystallography, in the discovery of potent inhibitors based on a hydroxy ethylamine (HEA) transition-state mimetic. These inhibitors were capable of lowering amyloid production in a cell-based assay.


Subject(s)
Alzheimer Disease/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Combinatorial Chemistry Techniques , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/antagonists & inhibitors , Crystallography, X-Ray , Ethylamines/chemistry , Molecular Structure , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 18(3): 1022-6, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18171615

ABSTRACT

This article is focusing on further optimization of previously described hydroxy ethylamine (HEA) BACE-1 inhibitors obtained from a focused library with the support of X-ray crystallography. Optimization of the non-prime side of our inhibitors and introduction of a 6-membered sultam substituent binding to Asn-294 as well as a fluorine in the C-2 position led to derivatives with nanomolar potency in cell-based assays.


Subject(s)
Alzheimer Disease/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Combinatorial Chemistry Techniques , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Asparagine/chemistry , Crystallography, X-Ray , Disease Models, Animal , Ethylamines/chemistry , Fluorine/chemistry , Mice , Molecular Structure , Nanotechnology , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 18(3): 1017-21, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18166458

ABSTRACT

This paper describes the discovery of non-peptidic, potent, and selective hydroxy ethylamine (HEA) inhibitors of BACE-1 by replacement of the prime side of a lead di-amide 2. Inhibitors with nanosmolar potency and high selectivity were identified. Depending on the nature of the P(1)(') and P(2)(') substituents, two different binding modes were observed in X-ray co-crystal structures.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Combinatorial Chemistry Techniques , Ethylamines/chemical synthesis , Ethylamines/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/antagonists & inhibitors , Crystallography, X-Ray , Ethylamines/chemistry , Humans , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
18.
SLAS Discov ; 23(1): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28957646

ABSTRACT

A persistent problem in early small-molecule drug discovery is the frequent lack of rank-order correlation between biochemical potencies derived from initial screens using purified proteins and the diminished potency and efficacy observed in subsequent disease-relevant cellular phenotypic assays. The introduction of the cellular thermal shift assay (CETSA) has bridged this gap by enabling assessment of drug target engagement directly in live cells based on ligand-induced changes in protein thermal stability. Initial success in applying CETSA across multiple drug target classes motivated our investigation into replacing the low-throughput, manually intensive Western blot readout with a quantitative, automated higher-throughput assay that would provide sufficient capacity to use CETSA as a primary hit qualification strategy. We introduce a high-throughput dose-response cellular thermal shift assay (HTDR-CETSA), a single-pot homogenous assay adapted for high-density microtiter plate format. The assay features titratable BacMam expression of full-length target proteins fused to the DiscoverX 42 amino acid ePL tag in HeLa suspension cells, facilitating enzyme fragment complementation-based chemiluminescent quantification of ligand-stabilized soluble protein. This simplified format can accommodate determination of full-dose CETSA curves for hundreds of individual compounds/analyst/day in replicates. HTDR-CETSA data generated for substrate site and alternate binding mode inhibitors of the histone-lysine N-methyltransferase SMYD3 in HeLa suspension cells demonstrate excellent correlation with rank-order potencies observed in cellular mechanistic assays and direct translation to target engagement of endogenous Smyd3 in cancer-relevant cell lines. We envision this workflow to be generically applicable to HTDR-CETSA screening spanning a wide variety of soluble intracellular protein target classes.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Cell Culture Techniques , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Activation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Small Molecule Libraries , Workflow
20.
Nat Commun ; 8: 16081, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28714473

ABSTRACT

The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Gene Library , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries , Staphylococcus aureus/drug effects , Acinetobacter baumannii/metabolism , Drug Evaluation, Preclinical , Molecular Targeted Therapy , Mycobacterium tuberculosis/metabolism , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL