Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Chembiochem ; 22(12): 2107-2110, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33838082

ABSTRACT

PARP14 is an interferon-stimulated gene that is overexpressed in multiple tumor types, influencing pro-tumor macrophage polarization as well as suppressing the antitumor inflammation response by modulating IFN-γ and IL-4 signaling. PARP14 is a 203 kDa protein that possesses a catalytic domain responsible for the transfer of mono-ADP-ribose to its substrates. PARP14 also contains three macrodomains and a WWE domain which are binding modules for mono-ADP-ribose and poly-ADP-ribose, respectively, in addition to two RNA recognition motifs. Catalytic inhibitors of PARP14 have been shown to reverse IL-4 driven pro-tumor gene expression in macrophages, however it is not clear what roles the non-enzymatic biomolecular recognition motifs play in PARP14-driven immunology and inflammation. To further understand this, we have discovered a heterobifunctional small molecule designed based on a catalytic inhibitor of PARP14 that binds in the enzyme's NAD+ -binding site and recruits cereblon to ubiquitinate it and selectively target it for degradation.


Subject(s)
Poly(ADP-ribose) Polymerases/metabolism , Small Molecule Libraries/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
2.
Biochim Biophys Acta ; 1860(11 Pt A): 2537-2552, 2016 11.
Article in English | MEDLINE | ID: mdl-27474998

ABSTRACT

BACKGROUND: Semi-synthetic oleanane triterpenoid antioxidant inflammation modulators (tpAIMs) are small molecules that interact with KEAP1 cysteine residue 151 (C151) and activate NRF2. Exploration of the structure-activity relationship between the tpAIMs and KEAP1 is limited by the predominantly hydrocarbon nature of the oleanane triterpenoid pentacyclic ring structure. Therefore, we used novel, chemically-tractable, synthetic antioxidant inflammation modulators (sAIMs) to probe the stereoselectivity of the ligand-protein interaction. METHODS: We measured several parameters of NRF2 activation to assess the potency of sAIM enantiomers with natural (tpAIM-like) 4(S),5(S),10(R) or unnatural 4(R),5(R),10(S) configurations. Additionally, we determined the crystal structure of the KEAP1 BTB domain in complex with two different sAIMs. RESULTS: We found that the potencies of sAIM enantiomers in the natural configuration were similar to those of the tpAIM, RTA 405. Strikingly, sAIM enantiomers in the unnatural configuration were 10- to 40-fold less potent than their natural counterparts. Crystallographic studies of sAIMs in complex with the KEAP1 BTB domain demonstrated that these ligands form a covalent bond with C151 and revealed the presence of additional hydrogen bonds, Van der Waals interactions, and pi-stacking interactions. CONCLUSIONS: Although KEAP1 C151 is required for NRF2 activation by tpAIMs and sAIMs, interactions with other KEAP1 residues are critical for the stereospecific recognition and potency of these ligands. GENERAL SIGNIFICANCE: This work demonstrates that reversible cyanoenone Michael acceptors, such as the tpAIMs and sAIMs, can be specifically tuned to regulate redox sensitive cysteine residues on key signaling molecules, an approach with significant promise for innovative drug development.


Subject(s)
Antioxidants/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/chemistry , Quantitative Structure-Activity Relationship , Small Molecule Libraries/pharmacology , Animals , Antioxidants/chemistry , Binding Sites , HEK293 Cells , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Mice , Molecular Docking Simulation , NF-E2-Related Factor 2/chemistry , Small Molecule Libraries/chemistry
3.
Biochemistry ; 55(11): 1557-69, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26652298

ABSTRACT

Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.


Subject(s)
Protein Methyltransferases/chemistry , Protein Methyltransferases/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
4.
Nature ; 468(7325): 784-9, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21076397

ABSTRACT

Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154 kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.


Subject(s)
RNA, Transfer, Phe/metabolism , Ribonuclease P/chemistry , Ribonuclease P/metabolism , Thermotoga maritima/enzymology , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Genes, Bacterial/genetics , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Metals/metabolism , Models, Molecular , Molecular Conformation , RNA, Transfer, Phe/chemistry , RNA, Transfer, Phe/genetics , Ribonuclease P/genetics , Structure-Activity Relationship , Substrate Specificity , Thermotoga maritima/genetics
5.
Bioorg Med Chem Lett ; 24(6): 1484-8, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24582986

ABSTRACT

Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.


Subject(s)
Drug Design , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Binding Sites , Biphenyl Compounds/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding , Protein Structure, Tertiary , Salicylic Acid/chemistry , Salicylic Acid/metabolism , Sulfonamides/chemistry , Sulfonamides/metabolism
6.
Immunohorizons ; 6(7): 432-446, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817532

ABSTRACT

The type 2 cytokines IL-4 and IL-13, which share use of an IL-4 receptor α-chain and its nuclear induction of the transcription factor STAT6, are crucial in elicitation and maintenance of allergic conditions including asthma. STAT6 binds poly(ADP-ribose) polymerase (PARP)14, an ADP-ribosyl monotransferase. Elimination of PARP14 by gene targeting led to attenuation of OVA-specific allergic lung inflammation. However, PARP14 has multiple functional domains apart from the portion that catalyzes ADP-ribosylation, and it is not clear whether inhibition of the catalytic function has any biological consequence. Using BALB/c mice sensitized to the allergen Alternaria alternata, we show that peroral administration of RBN012759, a highly selective inhibitor of ADP-ribosylation by PARP14 with negligible impact on other members of the PARP gene family, achieved biologically active plasma concentrations and altered several responses to the Ag. Specifically, the pharmaceutical compound decreased mucus after allergen challenge, blunted the induced increases in circulating IgE, and prevented suppression of IgG2a. We conclude that PARP14 catalytic activity can contribute to pathogenesis in allergic or atopic processes and propose that other biological endpoints dependent on ADP-ribosylation by PARP14 can be targeted using selective inhibition.


Subject(s)
Allergens , Asthma , Animals , Asthma/drug therapy , Disease Models, Animal , Immunoglobulin E , Mice , Mucus/metabolism , Pharmaceutical Preparations/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/therapeutic use
7.
Nature ; 437(7058): 584-7, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16113684

ABSTRACT

Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 A resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.


Subject(s)
Nucleic Acid Conformation , RNA, Bacterial/chemistry , Ribonuclease P/chemistry , Ribonuclease P/genetics , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribonuclease P/metabolism
8.
Cell Chem Biol ; 28(8): 1158-1168.e13, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33705687

ABSTRACT

PARP14 has been implicated by genetic knockout studies to promote protumor macrophage polarization and suppress the antitumor inflammatory response due to its role in modulating interleukin-4 (IL-4) and interferon-γ signaling pathways. Here, we describe structure-based design efforts leading to the discovery of a potent and highly selective PARP14 chemical probe. RBN012759 inhibits PARP14 with a biochemical half-maximal inhibitory concentration of 0.003 µM, exhibits >300-fold selectivity over all PARP family members, and its profile enables further study of PARP14 biology and disease association both in vitro and in vivo. Inhibition of PARP14 with RBN012759 reverses IL-4-driven protumor gene expression in macrophages and induces an inflammatory mRNA signature similar to that induced by immune checkpoint inhibitor therapy in primary human tumor explants. These data support an immune suppressive role of PARP14 in tumors and suggest potential utility of PARP14 inhibitors in the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Inflammation/drug therapy , Interleukin-4/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Macrophages/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-4/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Poly(ADP-ribose) Polymerases/genetics , RAW 264.7 Cells , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Cancer Cell ; 39(9): 1214-1226.e10, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34375612

ABSTRACT

PARP7 is a monoPARP that catalyzes the transfer of single units of ADP-ribose onto substrates to change their function. Here, we identify PARP7 as a negative regulator of nucleic acid sensing in tumor cells. Inhibition of PARP7 restores type I interferon (IFN) signaling responses to nucleic acids in tumor models. Restored signaling can directly inhibit cell proliferation and activate the immune system, both of which contribute to tumor regression. Oral dosing of the PARP7 small-molecule inhibitor, RBN-2397, results in complete tumor regression in a lung cancer xenograft and induces tumor-specific adaptive immune memory in an immunocompetent mouse cancer model, dependent on inducing type I IFN signaling in tumor cells. PARP7 is a therapeutic target whose inhibition induces both cancer cell-autonomous and immune stimulatory effects via enhanced IFN signaling. These data support the targeting of a monoPARP in cancer and introduce a potent and selective PARP7 inhibitor to enter clinical development.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Interferon Type I/metabolism , Neoplasms/drug therapy , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Small Molecule Libraries/administration & dosage , Adaptive Immunity/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , HeLa Cells , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
11.
SLAS Discov ; 25(3): 241-252, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31855104

ABSTRACT

Mono(ADP-ribosylation) (MARylation) and poly(ADP-ribosylation) (PARylation) are posttranslational modifications found on multiple amino acids. There are 12 enzymatically active mono(ADP-ribose) polymerase (monoPARP) enzymes and 4 enzymatically active poly(ADP-ribose) polymerase (polyPARP) enzymes that use nicotinamide adenine dinucleotide (NAD+) as the ADP-ribose donating substrate to generate these modifications. While there are approved drugs and clinical trials ongoing for the enzymes that perform PARylation, MARylation is gaining recognition for its role in immune function, inflammation, and cancer. However, there is a lack of chemical probes to study the function of monoPARPs in cells and in vivo. An important first step to generating chemical probes for monoPARPs is to develop biochemical assays to enable hit finding, and determination of the potency and selectivity of inhibitors. Complicating the development of enzymatic assays is that it is poorly understood how monoPARPs engage their substrates. To overcome this, we have developed a family-wide approach to developing robust high-throughput monoPARP assays where the enzymes are immobilized and forced to self-modify using biotinylated-NAD+, which is detected using a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) readout. Herein we describe the development of assays for 12 monoPARPs and 3 polyPARPs and apply them to understand the potency and selectivity of a focused library of inhibitors across this family.


Subject(s)
ADP Ribose Transferases/antagonists & inhibitors , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , Poly(ADP-ribose) Polymerase Inhibitors/isolation & purification , Protein Processing, Post-Translational/genetics , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/genetics , ADP-Ribosylation/genetics , Adenosine Diphosphate Ribose/genetics , Enzyme Inhibitors/pharmacology , Humans , NAD/chemistry , Poly ADP Ribosylation/genetics , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/drug effects , Poly(ADP-ribose) Polymerases/genetics , Substrate Specificity
12.
Cell Chem Biol ; 27(7): 877-887.e14, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32679093

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) enzymes use nicotinamide adenine dinucleotide (NAD+) to modify up to seven different amino acids with a single mono(ADP-ribose) unit (MARylation deposited by PARP monoenzymes) or branched poly(ADP-ribose) polymers (PARylation deposited by PARP polyenzymes). To enable the development of tool compounds for PARP monoenzymes and polyenzymes, we have developed active site probes for use in in vitro and cellular biophysical assays to characterize active site-directed inhibitors that compete for NAD+ binding. These assays are agnostic of the protein substrate for each PARP, overcoming a general lack of knowledge around the substrates for these enzymes. The in vitro assays use less enzyme than previously described activity assays, enabling discrimination of inhibitor potencies in the single-digit nanomolar range, and the cell-based assays can differentiate compounds with sub-nanomolar potencies and measure inhibitor residence time in live cells.


Subject(s)
Fluorescent Dyes/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Binding, Competitive , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , NAD/chemistry , NAD/metabolism , Nanoparticles/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Surface Plasmon Resonance
13.
Curr Opin Struct Biol ; 16(3): 327-35, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16650980

ABSTRACT

Ribonuclease P (RNase P) is one of only two known universal ribozymes and was one of the first ribozymes to be discovered. It is involved in RNA processing, in particular the 5' maturation of tRNA. Unlike most other natural ribozymes, it recognizes and cleaves its substrate in trans. RNase P is a ribonucleoprotein complex containing one RNA subunit and as few as one protein subunit. It has been shown that, in bacteria and in some archaea, the RNA subunit alone can support catalysis. The structure and function of bacterial RNase P RNA have been studied extensively, but the detailed catalytic mechanism is not yet fully understood. Recently, structures of one of the structural domains and of the entire RNA component of RNase P from two different bacteria have been described. These structures provide the first atomic-level information on the structural assembly of the RNA component, and the regions involved in substrate recognition and catalysis. Comparison of these structures reveals a highly conserved core that comprises two universally conserved structural modules. Interestingly, the same structural core can be found in the context of different scaffolds.


Subject(s)
Models, Molecular , Ribonuclease P/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Catalytic Domain , Conserved Sequence , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribonuclease P/genetics , Ribonuclease P/metabolism
14.
Cancer Cell ; 36(1): 100-114.e25, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31257072

ABSTRACT

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/deficiency , Alternative Splicing , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/chemistry , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein-Arginine N-Methyltransferases/chemistry , Substrate Specificity
15.
J Mol Biol ; 365(4): 1005-16, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17097674

ABSTRACT

HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently published Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from approximately 10-14.5 kcal/mol, representing K(d) values in the nanomolar to low picomolar range, and a maximum stabilization of at least approximately 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.


Subject(s)
Anabaena/chemistry , Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Escherichia coli/metabolism , Integration Host Factors/chemistry , Base Sequence , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Nucleosomes/chemistry , Protein Binding , Transcription, Genetic
16.
PLoS One ; 13(5): e0197082, 2018.
Article in English | MEDLINE | ID: mdl-29742153

ABSTRACT

WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.


Subject(s)
Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Neoplasms/drug therapy , Peptides/chemistry , Repressor Proteins/antagonists & inhibitors , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/genetics , Humans , Lysine/chemistry , Neoplasms/enzymology , Norleucine/analogs & derivatives , Norleucine/chemistry , Norleucine/pharmacology , PR-SET Domains/genetics , Peptides/genetics , Protein Conformation/drug effects , Repressor Proteins/chemistry , Repressor Proteins/genetics
17.
Curr Opin Struct Biol ; 14(1): 28-35, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15102446

ABSTRACT

The energetic cost of bending short segments of DNA is very high. This bending is critical for the packaging of DNA and is exploited to regulate many cellular processes. In prokaryotes, IHF and HU are key architectural proteins present at high concentrations. New protein-DNA co-crystal structures, and the adaptation of advanced biophysical and biochemical techniques have led to an improved understanding of how these proteins interact with DNA. These techniques include time-resolved synchrotron X-ray footprinting, differential scanning calorimetry, isothermal titration calorimetry and single-molecule experiments.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Integration Host Factors/metabolism , Models, Molecular , Amino Acid Sequence , Calorimetry, Differential Scanning , DNA/chemistry , Escherichia coli/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Sequence Alignment , Sequence Homology , Structure-Activity Relationship , Thermodynamics
18.
J Biomol Screen ; 20(6): 810-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25755264

ABSTRACT

Demethylation of histones by lysine demethylases (KDMs) plays a critical role in controlling gene transcription. Aberrant demethylation may play a causal role in diseases such as cancer. Despite the biological significance of these enzymes, there are limited assay technologies for study of KDMs and few quality chemical probes available to interrogate their biology. In this report, we demonstrate the utility of self-assembled monolayer desorption/ionization (SAMDI) mass spectrometry for the investigation of quantitative KDM enzyme kinetics and for high-throughput screening for KDM inhibitors. SAMDI can be performed in 384-well format and rapidly allows reaction components to be purified prior to injection into a mass spectrometer, without a throughput-limiting liquid chromatography step. We developed sensitive and robust assays for KDM1A (LSD1, AOF2) and KDM4C (JMJD2C, GASC1) and screened 13,824 compounds against each enzyme. Hits were rapidly triaged using a redox assay to identify compounds that interfered with the catalytic oxidation chemistry used by the KDMs for the demethylation reaction. We find that overall this high-throughput mass spectrometry platform coupled with the elimination of redox active compounds leads to a hit rate that is manageable for follow-up work.


Subject(s)
Artifacts , High-Throughput Screening Assays/methods , Histone Demethylases/metabolism , Mass Spectrometry/methods , Oxidation-Reduction , Drug Discovery/methods , Enzyme Assays , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Methylation , Small Molecule Libraries
19.
ACS Med Chem Lett ; 6(6): 655-9, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26101569

ABSTRACT

A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.

20.
ACS Med Chem Lett ; 4(2): 211-5, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900653

ABSTRACT

To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3ß, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding.

SELECTION OF CITATIONS
SEARCH DETAIL