Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
Add more filters

Publication year range
1.
Gastroenterology ; 166(5): 872-885.e2, 2024 05.
Article in English | MEDLINE | ID: mdl-38320723

ABSTRACT

BACKGROUND & AIMS: Genetic testing uptake for cancer susceptibility in family members of patients with cancer is suboptimal. Among relatives of patients with pancreatic ductal adenocarcinoma (PDAC), The GENetic Education, Risk Assessment, and TEsting (GENERATE) study evaluated 2 online genetic education/testing delivery models and their impact on patient-reported psychological outcomes. METHODS: Eligible participants had ≥1 first-degree relative with PDAC, or ≥1 first-/second-degree relative with PDAC with a known pathogenic germline variant in 1 of 13 PDAC predisposition genes. Participants were randomized by family, between May 8, 2019, and June 1, 2021. Arm 1 participants underwent a remote interactive telemedicine session and online genetic education. Arm 2 participants were offered online genetic education only. All participants were offered germline testing. The primary outcome was genetic testing uptake, compared by permutation tests and mixed-effects logistic regression models. We hypothesized that Arm 1 participants would have a higher genetic testing uptake than Arm 2. Validated surveys were administered to assess patient-reported anxiety, depression, and cancer worry at baseline and 3 months postintervention. RESULTS: A total of 424 families were randomized, including 601 participants (n = 296 Arm 1; n = 305 Arm 2), 90% of whom completed genetic testing (Arm 1 [87%]; Arm 2 [93%], P = .014). Arm 1 participants were significantly less likely to complete genetic testing compared with Arm 2 participants (adjusted ratio [Arm1/Arm2] 0.90, 95% confidence interval 0.78-0.98). Among participants who completed patient-reported psychological outcomes questionnaires (Arm 1 [n = 194]; Arm 2 [n = 206]), the intervention did not affect mean anxiety, depression, or cancer worry scores. CONCLUSIONS: Remote genetic education and testing can be a successful and complementary option for delivering genetics care. (Clinicaltrials.gov, number NCT03762590).


Subject(s)
Carcinoma, Pancreatic Ductal , Genetic Predisposition to Disease , Genetic Testing , Pancreatic Neoplasms , Patient Reported Outcome Measures , Telemedicine , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/psychology , Pancreatic Neoplasms/diagnosis , Male , Female , Middle Aged , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/psychology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/therapy , Genetic Predisposition to Disease/psychology , Risk Assessment , Aged , Anxiety/psychology , Anxiety/diagnosis , Anxiety/etiology , Adult , Depression/diagnosis , Depression/genetics , Depression/psychology , Genetic Counseling/psychology , Germ-Line Mutation , Family/psychology
2.
N Engl J Med ; 383(11): 1028-1039, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32905675

ABSTRACT

BACKGROUND: The efficacy and safety of combination therapy with eflornithine and sulindac, as compared with either drug alone, in delaying disease progression in patients with familial adenomatous polyposis are unknown. METHODS: We evaluated the efficacy and safety of the combination of eflornithine and sulindac, as compared with either drug alone, in adults with familial adenomatous polyposis. The patients were stratified on the basis of anatomical site with the highest polyp burden and surgical status; the strata were precolectomy (shortest projected time to disease progression), rectal or ileal pouch polyposis after colectomy (longest projected time), and duodenal polyposis (intermediate projected time). The patients were then randomly assigned in a 1:1:1 ratio to receive 750 mg of eflornithine, 150 mg of sulindac, or both once daily for up to 48 months. The primary end point, assessed in a time-to-event analysis, was disease progression, defined as a composite of major surgery, endoscopic excision of advanced adenomas, diagnosis of high-grade dysplasia in the rectum or pouch, or progression of duodenal disease. RESULTS: A total of 171 patients underwent randomization. Disease progression occurred in 18 of 56 patients (32%) in the eflornithine-sulindac group, 22 of 58 (38%) in the sulindac group, and 23 of 57 (40%) in the eflornithine group, with a hazard ratio of 0.71 (95% confidence interval [CI], 0.39 to 1.32) for eflornithine-sulindac as compared with sulindac (P = 0.29) and 0.66 (95% CI, 0.36 to 1.24) for eflornithine-sulindac as compared with eflornithine. Among 37 precolectomy patients, the corresponding values in the treatment groups were 2 of 12 patients (17%), 6 of 13 (46%), and 5 of 12 (42%) (hazard ratios, 0.30 [95% CI, 0.07 to 1.32] and 0.20 [95% CI, 0.03 to 1.32]); among 34 patients with rectal or ileal pouch polyposis, the values were 4 of 11 patients (36%), 2 of 11 (18%), and 5 of 12 (42%) (hazard ratios, 2.03 [95% CI, 0.43 to 9.62] and 0.84 [95% CI, 0.24 to 2.90]); and among 100 patients with duodenal polyposis, the values were 12 of 33 patients (36%), 14 of 34 (41%), and 13 of 33 (39%) (hazard ratios, 0.73 [95% CI, 0.34 to 1.52] and 0.76 [95% CI, 0.35 to 1.64]). Adverse and serious adverse events were similar across the treatment groups. CONCLUSIONS: In this trial involving patients with familial adenomatous polyposis, the incidence of disease progression was not significantly lower with the combination of eflornithine and sulindac than with either drug alone. (Funded by Cancer Prevention Pharmaceuticals; ClinicalTrials.gov number, NCT01483144; EudraCT number, 2012-000427-41.).


Subject(s)
Adenomatous Polyposis Coli/drug therapy , Disease Progression , Eflornithine/therapeutic use , Sulindac/therapeutic use , Adult , Drug Therapy, Combination , Eflornithine/adverse effects , Female , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Male , Sulindac/adverse effects , Treatment Outcome
3.
Gastroenterology ; 162(7): 2063-2085, 2022 06.
Article in English | MEDLINE | ID: mdl-35487791

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Gastrointestinal Hemorrhage , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics
4.
Gastroenterology ; 162(3): 772-785.e4, 2022 03.
Article in English | MEDLINE | ID: mdl-34678218

ABSTRACT

BACKGROUND & AIMS: To successfully implement imaging-based pancreatic cancer (PC) surveillance, understanding the timeline and morphologic features of neoplastic progression is key. We aimed to investigate the progression to neoplasia from serial prediagnostic pancreatic imaging tests in high-risk individuals and identify factors associated with successful early detection. METHODS: We retrospectively examined the development of pancreatic abnormalities in high-risk individuals who were diagnosed with PC or underwent pancreatic surgery, or both, in 16 international surveillance programs. RESULTS: Of 2552 high-risk individuals under surveillance, 28 (1%) developed neoplastic progression to PC or high-grade dysplasia during a median follow-up of 29 months after baseline (interquartile range [IQR], 40 months). Of these, 13 of 28 (46%) presented with a new lesion (median size, 15 mm; range 7-57 mm), a median of 11 months (IQR, 8; range 3-17 months) after a prior examination, by which time 10 of 13 (77%) had progressed beyond the pancreas. The remaining 15 of 28 (54%) had neoplastic progression in a previously detected lesion (12 originally cystic, 2 indeterminate, 1 solid), and 11 (73%) had PC progressed beyond the pancreas. The 12 patients with cysts had been monitored for 21 months (IQR, 15 months) and had a median growth of 5 mm/y (IQR, 8 mm/y). Successful early detection (as high-grade dysplasia or PC confined to the pancreas) was associated with resection of cystic lesions (vs solid or indeterminate lesions (odds ratio, 5.388; 95% confidence interval, 1.525-19.029) and small lesions (odds ratio, 0.890/mm; 95% confidence interval 0.812-0.976/mm). CONCLUSIONS: In nearly half of high-risk individuals developing high-grade dysplasia or PC, no prior lesions are detected by imaging, yet they present at an advanced stage. Progression can occur before the next scheduled annual examination. More sensitive diagnostic tools or a different management strategy for rapidly growing cysts are needed.


Subject(s)
Early Detection of Cancer , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Precancerous Conditions/diagnostic imaging , Precancerous Conditions/pathology , Watchful Waiting , Adult , Aged , Aged, 80 and over , Disease Progression , Endosonography , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Metastasis , Pancreas/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Pancreatic Neoplasms/surgery , Retrospective Studies , Risk Factors , Time Factors , Tomography, X-Ray Computed , Tumor Burden
5.
J Am Acad Dermatol ; 88(6): 1282-1290, 2023 06.
Article in English | MEDLINE | ID: mdl-36773823

ABSTRACT

BACKGROUND: Little is known about patient-specific risk factors for skin neoplasia in individuals with Lynch syndrome (LS). OBJECTIVE: Identify clinical factors associated with development of skin neoplasms in LS. METHODS: Clinical data were systematically collected on a cohort of LS carriers (confirmed pathogenic germline variants in MLH1, MSH2, MSH6, PMS2, or EPCAM) age ≥18 undergoing clinical genetics care at Dana-Farber Cancer Institute from January 2000 to March 2020. Multivariable logistic regression was performed to evaluate clinical factors associated with skin neoplasia. RESULTS: Of 607 LS carriers, 9.2% had LS-associated skin neoplasia and 15.0% had non-LS-associated skin neoplasia; 58.2% (353/607) had documentation of prior dermatologic evaluation; 29.7% (38/128) with skin neoplasms lacked a history of visceral LS-associated malignancy. LS-associated skin neoplasms were significantly associated with male sex, age, race, MLH1 pathogenic germline variants, MSH2/EPCAM pathogenic germline variants, and personal history of non-LS skin neoplasms. Non-LS-associated skin neoplasms was significantly associated with age, number of first- and second-degree relatives with non-LS-associated skin neoplasms, and personal history of LS-associated skin neoplasms. LIMITATIONS: Single-institution observational study; demographic homogeneity. CONCLUSIONS: Skin neoplasms are common in individuals with LS. We identified clinical factors associated with LS- and non-LS-associated skin neoplasms. Regular dermatologic surveillance should be considered for all LS carriers.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Skin Neoplasms , Humans , Male , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Epithelial Cell Adhesion Molecule/genetics , MutS Homolog 2 Protein/genetics , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Germ-Line Mutation , DNA Mismatch Repair
6.
Br J Cancer ; 126(11): 1595-1603, 2022 06.
Article in English | MEDLINE | ID: mdl-35197584

ABSTRACT

BACKGROUND: Mismatch repair (MMR) deficiency is the hallmark of tumours from Lynch syndrome (LS), sporadic MLH1 hypermethylated and Lynch-like syndrome (LLS), but there is a lack of understanding of the variability in their mutational profiles based on clinical phenotypes. The aim of this study was to perform a molecular characterisation to identify novel features that can impact tumour behaviour and clinical management. METHODS: We tested 105 MMR-deficient colorectal cancer tumours (25 LS, 35 LLS and 45 sporadic) for global exome microsatellite instability, cancer mutational signatures, mutational spectrum and neoepitope load. RESULTS: Fifty-three percent of tumours showed high contribution of MMR-deficient mutational signatures, high level of global exome microsatellite instability, loss of MLH1/PMS2 protein expression and included sporadic tumours. Thirty-one percent of tumours showed weaker features of MMR deficiency, 62% lost MSH2/MSH6 expression and included 60% of LS and 44% of LLS tumours. Remarkably, 9% of all tumours lacked global exome microsatellite instability. Lastly, HLA-B07:02 could be triggering the neoantigen presentation in tumours that show the strongest contribution of MMR-deficient tumours. CONCLUSIONS: Next-generation sequencing approaches allow for a granular molecular characterisation of MMR-deficient tumours, which can be essential to properly diagnose and treat patients with these tumours in the setting of personalised medicine.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Microsatellite Instability , Brain Neoplasms , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , Mutation , Neoplastic Syndromes, Hereditary
7.
Gastroenterology ; 161(1): 143-150.e4, 2021 07.
Article in English | MEDLINE | ID: mdl-33794268

ABSTRACT

BACKGROUND & AIMS: Lynch syndrome (LS) is associated with increased risks of various gastrointestinal, gynecologic, genitourinary, and other cancers. Many clinical practice guidelines recommend that LS carriers' screening strategies be devised based on their family history of various cancers, in addition to age-, sex-, and gene-specific considerations. The aim of this study was to examine the association between family history and other clinical factors with LS carriers' histories of various cancers. METHODS: Two cohorts of LS carriers were analyzed: a laboratory-based cohort of consecutively ascertained individuals undergoing germline LS testing and a clinic-based cohort of LS carriers undergoing clinical care at an academic medical center. Multivariable logistic regression was performed to assess clinical factors associated with LS carriers' histories of various cancers/neoplasms. Familial burden was defined as LS carriers' aggregate number of first-/second-degree relatives with a history of a given malignancy. RESULTS: Multivariable analysis of the laboratory-based cohort (3828 LS carriers) identified familial burden as being incrementally associated with LS carriers' personal history of endometrial (odds ratio [OR], 1.37 per affected first-/second-degree relative; 95% confidence interval [CI], 1.21-1.56), urinary tract (OR, 2.72; 95% CI, 2.02-3.67), small bowel (OR, 3.17; 95% CI, 1.65-6.12), gastric (OR, 1.93; 95% CI, 1.24-3.02), and pancreaticobiliary cancers (OR, 2.10; 95% CI, 1.21-3.65) and sebaceous neoplasms (OR, 7.39; 95% CI, 2.71-20.15). Multivariable analysis of the clinic-based cohort (607 LS carriers) confirmed a significant association of familial burden of endometrial and urinary tract cancers. CONCLUSIONS: Familial burden - in addition to age, sex, and specific LS gene - should be used to assess LS carriers' risks of specific cancers and guide decision-making about organ-specific surveillance.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Germ-Line Mutation , Adult , Age Factors , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Cross-Sectional Studies , Female , Genetic Predisposition to Disease , Heredity , Humans , Male , Middle Aged , Pedigree , Phenotype , Risk Assessment , Risk Factors , Sex Factors
8.
Am J Gastroenterol ; 117(6): 846-864, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35471415

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This US Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Gastrointestinal Hemorrhage/complications , Hamartoma/complications , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps/complications , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics , Telangiectasia, Hereditary Hemorrhagic/complications
9.
Genet Med ; 24(6): 1196-1205, 2022 06.
Article in English | MEDLINE | ID: mdl-35305866

ABSTRACT

PURPOSE: This study aimed to evaluate the laboratory-related outcomes of participants who were offered genomic testing based on cancer family history risk assessment tools. METHODS: Patients from clinics that serve populations with access barriers, who are screened at risk for a hereditary cancer syndrome based on adapted family history collection tools (the Breast Cancer Genetics Referral Screening Tool and PREMM5), were offered exome-based panel testing for cancer risk and medically actionable secondary findings. We used descriptive statistics, electronic health record review, and inferential statistics to explore participant characteristics and results, consultations and actions related to pathogenic/likely pathogenic variants identified, and variables predicting category of findings, respectively. RESULTS: Of all the participants, 87% successfully returned a saliva kit. Overall, 5% had a pathogenic/likely pathogenic cancer risk variant and 1% had a secondary finding. Almost all (14/15, 93%) participants completed recommended consultations with nongenetics providers after an average of 17 months. The recommended actions (eg, breast magnetic resonance imaging) were completed by 17 of 25 participants. Participant personal history of cancer and PREMM5 score were each associated with the category of findings (history and colon cancer finding, Fisher's exact P = .02; history and breast cancer finding, Fisher's exact P = .01; PREMM5TM score; and colon cancer finding, Fisher's exact P < .001). CONCLUSION: This accessible model of hereditary cancer risk assessment and genetic testing yielded results that were often acted upon by patients and physicians.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Colonic Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Risk Assessment
10.
Genet Med ; 24(10): 2155-2166, 2022 10.
Article in English | MEDLINE | ID: mdl-35997715

ABSTRACT

PURPOSE: Models used to predict the probability of an individual having a pathogenic homozygous or heterozygous variant in a mismatch repair gene, such as MMRpro, are widely used. Recently, MMRpro was updated with new colorectal cancer penetrance estimates. The purpose of this study was to evaluate the predictive performance of MMRpro and other models for individuals with a family history of colorectal cancer. METHODS: We performed a validation study of 4 models, Leiden, MMRpredict, PREMM5, and MMRpro, using 784 members of clinic-based families from the United States. Predicted probabilities were compared with germline testing results and evaluated for discrimination, calibration, and predictive accuracy. We analyzed several strategies to combine models and improve predictive performance. RESULTS: MMRpro with additional tumor information (MMRpro+) and PREMM5 outperformed the other models in discrimination and predictive accuracy. MMRpro+ was the best calibrated with an observed to expected ratio of 0.98 (95% CI = 0.89-1.08). The combination models showed improvement over PREMM5 and performed similar to MMRpro+. CONCLUSION: MMRpro+ and PREMM5 performed well in predicting the probability of having a pathogenic homozygous or heterozygous variant in a mismatch repair gene. They serve as useful clinical decision tools for identifying individuals who would benefit greatly from screening and prevention strategies.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Germ-Line Mutation/genetics , Heterozygote , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics
11.
Gastrointest Endosc ; 95(6): 1025-1047, 2022 06.
Article in English | MEDLINE | ID: mdl-35487765

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S. Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/complications , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Gastrointestinal Hemorrhage/complications , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps/complications , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics , Telangiectasia, Hereditary Hemorrhagic/complications
12.
PLoS Genet ; 15(8): e1008344, 2019 08.
Article in English | MEDLINE | ID: mdl-31469826

ABSTRACT

Pancreatic adenocarcinoma (PC) is a lethal malignancy that is familial or associated with genetic syndromes in 10% of cases. Gene-based surveillance strategies for at-risk individuals may improve clinical outcomes. However, familial PC (FPC) is plagued by genetic heterogeneity and the genetic basis for the majority of FPC remains elusive, hampering the development of gene-based surveillance programs. The study was powered to identify genes with a cumulative pathogenic variant prevalence of at least 3%, which includes the most prevalent PC susceptibility gene, BRCA2. Since the majority of known PC susceptibility genes are involved in DNA repair, we focused on genes implicated in these pathways. We performed a region-based association study using the Mixed-Effects Score Test, followed by leave-one-out characterization of PC-associated gene regions and variants to identify the genes and variants driving risk associations. We evaluated 398 cases from two case series and 987 controls without a personal history of cancer. The first case series consisted of 109 patients with either FPC (n = 101) or PC at ≤50 years of age (n = 8). The second case series was composed of 289 unselected PC cases. We validated this discovery strategy by identifying known pathogenic BRCA2 variants, and also identified SMG1, encoding a serine/threonine protein kinase, to be significantly associated with PC following correction for multiple testing (p = 3.22x10-7). The SMG1 association was validated in a second independent series of 532 FPC cases and 753 controls (p<0.0062, OR = 1.88, 95%CI 1.17-3.03). We showed segregation of the c.4249A>G SMG1 variant in 3 affected relatives in a FPC kindred, and we found c.103G>A to be a recurrent SMG1 variant associating with PC in both the discovery and validation series. These results suggest that SMG1 is a novel PC susceptibility gene, and we identified specific SMG1 gene variants associated with PC risk.


Subject(s)
Genetic Association Studies/methods , Pancreatic Neoplasms/genetics , Sequence Analysis, DNA/methods , Adenocarcinoma/genetics , Adult , BRCA2 Protein/genetics , Carcinoma/genetics , Female , Genes, BRCA2 , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Pancreas/pathology , Pancreatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Pancreatic Neoplasms
13.
Hered Cancer Clin Pract ; 20(1): 22, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35689290

ABSTRACT

BACKGROUND: Risk assessment for hereditary cancer syndromes is recommended in primary care, but family history is rarely collected in enough detail to facilitate risk assessment and referral - a roadblock that disproportionately impacts individuals with healthcare access barriers. We sought to qualitatively assess a literacy-adapted, electronic patient-facing family history tool developed for use in diverse, underserved patient populations recruited in the Cancer Health Assessments Reaching Many (CHARM) Study. METHODS: Interview participants were recruited from a subpopulation of CHARM participants who experienced barriers to tool use in terms of spending a longer time to complete the tool, having incomplete attempts, and/or providing inaccurate family history in comparison to a genetic counselor-collected standard. We conducted semi-structured interviews with participants about barriers and facilitators to tool use and overall tool acceptability; interviews were recorded and professionally transcribed. Transcripts were coded based on a codebook developed using inductive techniques, and coded excerpts were reviewed to identify overarching themes related to barriers and facilitators to family history self-assessment and acceptability of the study tool. RESULTS: Interviewees endorsed the tool as easy to navigate and understand. However, they described barriers related to family history information, literacy and language, and certain tool functions. Participants offered concrete, easy-to-implement solutions to each barrier. Despite experience barriers to use of the tool, most participants indicated that electronic family history self-assessment was acceptable or preferable in comparison to clinician-collected family history. CONCLUSIONS: Even for participants who experienced barriers to tool use, family history self-assessment was considered an acceptable alternative to clinician-collected family history. Barriers experienced could be overcome with minor adaptations to the current family history tool. TRIAL REGISTRATION: This study is a sub-study of the Cancer Health Assessments Reaching Many (CHARM) trial, ClinicalTrials.gov, NCT03426878. Registered 8 February 2018.

14.
Lancet Oncol ; 22(11): 1618-1631, 2021 11.
Article in English | MEDLINE | ID: mdl-34678156

ABSTRACT

BACKGROUND: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS: The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS: Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION: After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING: Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer.


Subject(s)
DNA Mismatch Repair/genetics , Early Detection of Cancer , Prostatic Neoplasms/diagnosis , Adult , Aged , Biomarkers, Tumor/blood , DNA-Binding Proteins/genetics , Germ-Line Mutation , Heterozygote , Humans , Incidence , Male , Middle Aged , MutS Homolog 2 Protein/genetics , Prospective Studies , Prostate-Specific Antigen/blood , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics
15.
Br J Cancer ; 125(12): 1712-1717, 2021 12.
Article in English | MEDLINE | ID: mdl-34703010

ABSTRACT

INTRODUCTION: Identifying families with an underlying inherited cancer predisposition is a major goal of cancer prevention efforts. Mendelian risk models have been developed to better predict the risk associated with a pathogenic variant of developing breast/ovarian cancer (with BRCAPRO) and the risk of developing pancreatic cancer (PANCPRO). Given that pathogenic variants involving BRCA2 and BRCA1 predispose to all three of these cancers, we developed a joint risk model to capture shared susceptibility. METHODS: We expanded the existing framework for PANCPRO and BRCAPRO to jointly model risk of pancreatic, breast, and ovarian cancer and validated this new model, BRCAPANCPRO on three data sets each reflecting the common target populations. RESULTS: BRCAPANCPRO outperformed the prior BRCAPRO and PANCPRO models and yielded good discrimination for differentiating BRCA1 and BRCA2 carriers from non-carriers (AUCs 0.79, 95% CI: 0.73-0.84 and 0.70, 95% CI: 0.60-0.80) in families seen in high-risk clinics and pancreatic cancer family registries, respectively. In addition, BRCAPANCPRO was reasonably well calibrated for predicting future risk of pancreatic cancer (observed-to-expected (O/E) ratio = 0.81 [0.69, 0.94]). DISCUSSION: The BRCAPANCPRO model provides improved risk assessment over our previous risk models, particularly for pedigrees with a co-occurrence of pancreatic cancer and breast and/or ovarian cancer.


Subject(s)
Breast Neoplasms/diagnosis , Ovarian Neoplasms/diagnosis , Pancreatic Neoplasms/diagnosis , Female , Humans , Male , Medical History Taking , Risk Assessment
16.
Am J Hum Genet ; 102(3): 401-414, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29478780

ABSTRACT

Colorectal cancer (CRC) heritability has been estimated to be around 30%. However, mutations in the known CRC-susceptibility genes explain CRC risk in fewer than 10% of affected individuals. Germline mutations in DNA-repair genes (DRGs) have recently been reported in CRC, but their contribution to CRC risk is largely unknown. We evaluated the gene-level germline mutation enrichment of 40 DRGs in 680 unselected CRC individuals and 27,728 ancestry-matched cancer-free adults. Significant findings were then examined in independent cohorts of 1,661 unselected CRC individuals and 1,456 individuals with early-onset CRC. Of the 680 individuals in the discovery set, 31 (4.56%) individuals harbored germline pathogenic mutations in known CRC-susceptibility genes, and another 33 (4.85%) individuals had DRG mutations that have not been previously associated with CRC risk. Germline pathogenic mutations in ATM and PALB2 were enriched in both the discovery (OR = 2.81 and p = 0.035 for ATM and OR = 4.91 and p = 0.024 for PALB2) and validation (OR = 2.97 and adjusted p = 0.0013 for ATM and OR = 3.42 and adjusted p = 0.034 for PALB2) sets. Biallelic loss of ATM was evident in all individuals with matched tumor profiling. CRC individuals also had higher rates of actionable mutations in the HR pathway, which can substantially increase the risk of developing cancers other than CRC. Our analysis provides evidence for ATM and PALB2 as CRC-risk genes, underscoring the importance of the homologous recombination pathway in CRC. In addition, we identified frequent complete homologous recombination deficiency in CRC tumors, representing a unique opportunity to explore targeted therapeutic interventions such as poly-ADP ribose polymerase inhibitor (PARPi).


Subject(s)
Colorectal Neoplasms/genetics , DNA Repair/genetics , Inheritance Patterns/genetics , Adult , Aged , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , Risk Factors
17.
Am J Gastroenterol ; 116(4): 825-828, 2021 04.
Article in English | MEDLINE | ID: mdl-33982955

ABSTRACT

INTRODUCTION: The additional diagnostic value of dye-based chromoendosocpy (CE) for surveillance of patients with Lynch syndrome is subject of debate. METHODS: To clarify this debate, we performed an individual patient data meta-analysis of randomized studies that compared CE with WLE for the detection of adenomas in patients with Lynch syndrome. RESULTS: Three randomized studies comprising 533 patients were included. The adenoma detection rate was 74/265 (28%) in patients randomized to WLE compared with 83/266 (31%) in patients randomized to CE (odds ratio 1.17; 95% confidence interval 0.81-1.70). DISCUSSION: Based on low-quality evidence, CE showed no apparent increase in adenoma detection compared to WLE during surveillance of patients with Lynch syndrome.


Subject(s)
Colonoscopy/methods , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Randomized Controlled Trials as Topic , Humans
18.
Pancreatology ; 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33926820

ABSTRACT

BACKGROUND: COVID-19 pandemic-related disruptions to EUS-based pancreatic cancer surveillance in high-risk individuals remain uncertain. METHODS: Analysis of enrolled participants in the CAPS5 Study, a prospective multicenter study of pancreatic cancer surveillance in high-risk individuals. RESULTS: Amongst 693 enrolled high-risk individuals under active surveillance, 108 (16%) had an EUS scheduled during the COVID-19 pandemic-related shutdown (median length of 78 days) in the spring of 2020, with 97% of these procedures being canceled. Of these canceled surveillance EUSs, 83% were rescheduled in a median of 4.1 months, however 17% were not rescheduled after 6 months follow-up. Prior history of cancer was associated with increased likelihood of rescheduling. To date no pancreatic cancer has been diagnosed among those whose surveillance was delayed. CONCLUSIONS: COVID-19 delayed pancreatic cancer surveillance with no adverse outcomes in efficiently rescheduled individuals. However, 1 in 6 high-risk individuals had not rescheduled surveillance, indicating the need for vigilance to ensure timely surveillance rescheduling.

19.
Proc Natl Acad Sci U S A ; 115(18): 4767-4772, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29669919

ABSTRACT

To evaluate whether germline variants in genes encoding pancreatic secretory enzymes contribute to pancreatic cancer susceptibility, we sequenced the coding regions of CPB1 and other genes encoding pancreatic secretory enzymes and known pancreatitis susceptibility genes (PRSS1, CPA1, CTRC, and SPINK1) in a hospital series of pancreatic cancer cases and controls. Variants in CPB1, CPA1 (encoding carboxypeptidase B1 and A1), and CTRC were evaluated in a second set of cases with familial pancreatic cancer and controls. More deleterious CPB1 variants, defined as having impaired protein secretion and induction of endoplasmic reticulum (ER) stress in transfected HEK 293T cells, were found in the hospital series of pancreatic cancer cases (5/986, 0.5%) than in controls (0/1,045, P = 0.027). Among familial pancreatic cancer cases, ER stress-inducing CPB1 variants were found in 4 of 593 (0.67%) vs. 0 of 967 additional controls (P = 0.020), with a combined prevalence in pancreatic cancer cases of 9/1,579 vs. 0/2,012 controls (P < 0.01). More ER stress-inducing CPA1 variants were also found in the combined set of hospital and familial cases with pancreatic cancer than in controls [7/1,546 vs. 1/2,012; P = 0.025; odds ratio, 9.36 (95% CI, 1.15-76.02)]. Overall, 16 (1%) of 1,579 pancreatic cancer cases had an ER stress-inducing CPA1 or CPB1 variant, compared with 1 of 2,068 controls (P < 0.00001). No other candidate genes had statistically significant differences in variant prevalence between cases and controls. Our study indicates ER stress-inducing variants in CPB1 and CPA1 are associated with pancreatic cancer susceptibility and implicate ER stress in pancreatic acinar cells in pancreatic cancer development.


Subject(s)
Carboxypeptidase B , Carboxypeptidases A , Endoplasmic Reticulum Stress/genetics , Genetic Predisposition to Disease , Mutation , Neoplasm Proteins , Pancreatic Neoplasms , Aged , Aged, 80 and over , Carboxypeptidase B/genetics , Carboxypeptidase B/metabolism , Carboxypeptidases A/genetics , Carboxypeptidases A/metabolism , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
20.
Gut ; 69(1): 7-17, 2020 01.
Article in English | MEDLINE | ID: mdl-31672839

ABSTRACT

BACKGROUND AND AIM: The International Cancer of the Pancreas Screening Consortium met in 2018 to update its consensus recommendations for the management of individuals with increased risk of pancreatic cancer based on family history or germline mutation status (high-risk individuals). METHODS: A modified Delphi approach was employed to reach consensus among a multidisciplinary group of experts who voted on consensus statements. Consensus was considered reached if ≥75% agreed or disagreed. RESULTS: Consensus was reached on 55 statements. The main goals of surveillance (to identify high-grade dysplastic precursor lesions and T1N0M0 pancreatic cancer) remained unchanged. Experts agreed that for those with familial risk, surveillance should start no earlier than age 50 or 10 years earlier than the youngest relative with pancreatic cancer, but were split on whether to start at age 50 or 55. Germline ATM mutation carriers with one affected first-degree relative are now considered eligible for surveillance. Experts agreed that preferred surveillance tests are endoscopic ultrasound and MRI/magnetic retrograde cholangiopancreatography, but no consensus was reached on how to alternate these modalities. Annual surveillance is recommended in the absence of concerning lesions. Main areas of disagreement included if and how surveillance should be performed for hereditary pancreatitis, and the management of indeterminate lesions. CONCLUSIONS: Pancreatic surveillance is recommended for selected high-risk individuals to detect early pancreatic cancer and its high-grade precursors, but should be performed in a research setting by multidisciplinary teams in centres with appropriate expertise. Until more evidence supporting these recommendations is available, the benefits, risks and costs of surveillance of pancreatic surveillance need additional evaluation.


Subject(s)
Carcinoma/diagnosis , Early Detection of Cancer/methods , Pancreatic Neoplasms/diagnosis , Age Factors , Biomedical Research/methods , Carcinoma/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Mass Screening/methods , Pancreatic Neoplasms/genetics , Population Surveillance/methods , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL