ABSTRACT
OBJECTIVES: Autoreactive B cells and interferon (IFN) signature are hallmarks of primary sjögren's syndrome (pSS), but how IFN signaling pathways influence autoantibody production and clinical manifestations remain unclear. More detailed studies hold promise for improved diagnostic methodologies and personalized treatment. METHODS: We analyzed peripheral blood T and B cell subsets from 34 pSS patients and 38 healthy donors (HDs) at baseline and upon stimulation regarding their expression levels of type I and II IFN signaling molecules (STAT1/2, IRF1, IRF9). Additionally, we investigated how the levels of these molecules correlated with serological and clinical characteristics and performed ROC analysis. RESULTS: Patients showed elevated IFN pathway molecules, including STAT1, STAT2 and IRF9 among most T and B cell subsets. We found a reduced ratio of phosphorylated STAT1 and STAT2 in patients in comparison to HDs, although B cells from patients were highly responsive by increased phosphorylation upon IFN stimulation. Correlation matrices showed further interrelations between STAT1, IRF1 and IRF9 in pSS. Levels of STAT1 and IRF9 in T and B cells correlated with the IFN type I marker Siglec-1 (CD169) on monocytes. High levels of STAT1 and IRF9 within pSS B cells were significantly associated with hypergammaglobulinemia as well as anti-SSA/anti-SSB autoantibodies. Elevated STAT1 levels were found in patients with extraglandular disease and could serve as a biomarker for this subgroup (p < 0.01). Notably, IRF9 levels in T and B cells correlated with EULAR Sjögren's syndrome disease activity index (ESSDAI). CONCLUSION: Here, we provide evidence that in active pSS patients, enhanced IFN signaling incl. unphosphorylated STAT1 and STAT2 with IRFs entertain chronic T and B cell activation. Furthermore, increased STAT1 levels candidate as biomarker of extraglandular disease, while IRF9 levels can serve as biomarker for disease activity.
Subject(s)
Biomarkers , Interferon-Stimulated Gene Factor 3, gamma Subunit , STAT1 Transcription Factor , Sjogren's Syndrome , Humans , Sjogren's Syndrome/immunology , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/metabolism , STAT1 Transcription Factor/metabolism , Female , Phosphorylation , Middle Aged , Male , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Aged , Adult , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Signal Transduction , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolismABSTRACT
The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN-α and IFN-γ stimulation of PBMCs from patients with severe COVID-19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon-pathway targeted treatments.
Subject(s)
COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , STAT1 Transcription Factor/immunology , Signal Transduction/immunology , Up-Regulation/immunology , Adult , Aged , Female , Humans , Interferon Regulatory Factors/immunology , Male , Middle Aged , Patient Acuity , Phosphorylation/immunologyABSTRACT
PURPOSE OF REVIEW: New insight into altered B cell distribution including newly identified subsets and abnormalities in systemic lupus erythematosus (SLE) as well as their role in immune protection are summarized in this review. RECENT FINDINGS: SLE carries characteristic B cell abnormalities, which offer new insights into B cell differentiation and their disturbances including discoveries of pathogenic B cell subsets and intrinsic B cell abnormalities. A recent study in SLE found that antigen-experienced B cell subsets lacking expression of CD27 and IgD defined by their lack of CXCR5 and CD19low expression are expanded in SLE and represent plasmablasts likely escaping proper selection. In terms of therapeutic targeting with broader coverage than rituximab, second-generation anti-CD20, anti-CD38 and CD19-CART treatment experiences have advanced our understanding recently. However, the key role of qualitative and quantitative B cell requirements in connection with T cells became apparent during SARS-Cov2 infection and vaccination, especially in patients with gradual B cell impairments by rituximab, mycophenolate mofetil and cyclophosphamide. SUMMARY: Identification and characterization relevant B cell subsets together with altered regulatory mechanisms in SLE facilitates new approaches in targeting pathogenic B cells but require consideration of preservation of protection.
Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , B-Lymphocytes , Humans , RNA, Viral , SARS-CoV-2ABSTRACT
OBJECTIVES: SLE is characterized by two pathogenic key signatures, type I IFN and B-cell abnormalities. How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) - signal transducer and activator of transcription (STAT). JAK-STAT inhibition is an attractive therapeutic possibility for SLE. We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared with other autoimmune diseases and healthy controls (HD) and related it to disease activity. METHODS: Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T cells of 21 HD, 10 rheumatoid arthritis (RA), seven primary Sjögren's (pSS) and 22 SLE patients was analysed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs (peripheral blood mononuclear cells) of SLE patients and HD after IFNα and IFNγ incubation were further investigated. RESULTS: SLE patients showed substantially higher STAT1 but not pSTAT1 in B- and T-cell subsets. Increased STAT1 expression in B-cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker. STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ. CONCLUSION: Enhanced expression of STAT1 by B-cell candidates as a key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold a promise to block STAT1 expression and control plasmablast induction in SLE.
Subject(s)
B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/immunology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocytes/immunology , Adult , Aged , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/physiopathology , B-Lymphocytes/drug effects , Case-Control Studies , Cell Differentiation , Female , Humans , Immunologic Factors/pharmacology , In Vitro Techniques , Interferon-alpha/pharmacology , Interferon-gamma/pharmacology , Janus Kinases/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Monocytes/immunology , Phosphorylation/drug effects , Plasma Cells/immunology , STAT1 Transcription Factor/drug effects , STAT3 Transcription Factor/drug effects , Severity of Illness Index , Signal Transduction , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/physiopathology , T-Lymphocytes/drug effects , Young AdultABSTRACT
PURPOSE OF REVIEW: This review summarizes recent insights and current understanding of the role of postactivated B cells in SLE and related pathogenic and potential therapeutic implications. RECENT FINDING: B cells are considered key players in SLE and experience from various B-cell-targeted therapies underlines their clinical relevance. In the last years, new insights have been obtained on B-cell abnormalities within the complex pathophysiology of SLE. These insights involve a revised understanding of BCR signaling, that has been reported to be hyperresponsive in the past, but newer studies suggest a postactivation functiotype in terms of reduced BCR and TLR signaling. Despite comprehensive efforts to delineate B-cell abnormalities on assessing large-scale genomic, epigenomic and proteomic data, understanding functional impairments of cellular interactions and subcellular functions remains crucial. A recently identified enhanced protein tyrosine phosphatase (PTP) activity was found in relation to diminished BCR responses in SLE. This finding together with reduced cytokine production upon TLR9 activation appears to mark postactivated lupus B cells. Other studies identified increased PTP activity in line with a gain-of-function mutation of phosphatase PTPN22, one of the strongest SLE risk alleles. Improved understanding of these B cell abnormalities in SLE holds promise to gain further insights in mechanisms of autoimmunity and pave the way for selective therapies targeting key principles of chronic autoimmunity. SUMMARY: SLE B cells (similar as previously described for lupus T cells) are characterized by a postactivation (exhausted) functiotype mandating consideration for innovative therapies.
Subject(s)
Autoimmunity , B-Lymphocytes/immunology , Immunotherapy/methods , Lupus Erythematosus, Systemic/immunology , Proteomics/methods , Humans , Lupus Erythematosus, Systemic/therapyABSTRACT
OBJECTIVES: Autoimmune congenital heart block (CHB) is associated with placental transcytosis of maternal autoantibodies directed against Ro/SS-A and La/SS-B. However, only about 2% of children born to mothers with the respective antibodies are affected, indicating that further risk factors exist, which are not yet fully understood. In this study, we investigated whether a maternal type I interferon (IFN) signature represents a risk factor for the development of CHB. METHODS: Blood samples, clinical data and serological parameters from 9 women with CHB pregnancies, 14 pregnant women with antibodies against Ro/SS-A but without a CHB complication and another 30 healthy pregnant women as controls were studied. SIGLEC1 expression was measured by flow cytometry and was correlated to plasma IFN-α levels measured by ELISA, and IFN-γ-induced protein 10 (IP-10) levels measured by Bio-Plex technique. RESULTS: Mothers of affected children had a significantly higher expression of SIGLEC1 (p=0.0034) and IFN-α (p=0.014), but not of IP-10 (p=0.14, all MWU) compared to mothers of unaffected children. SIGLEC1 and IFN-α expression were reduced by hydroxychloroquine and oral glucocorticoids. CONCLUSIONS: High expression of SIGLEC1 in pregnant women with autoantibodies against Ro/SS-A indicates an enhanced risk for CHB development, and these women may benefit especially from IFN-α directed therapy, for example with hydroxychloroquine.
Subject(s)
Autoimmune Diseases/immunology , Chemokine CXCL10/immunology , Heart Block/congenital , Interferon-alpha/immunology , Maternal-Fetal Exchange/immunology , Monocytes/immunology , Pregnancy Complications/immunology , Sialic Acid Binding Ig-like Lectin 1/immunology , Adult , Antibodies, Antinuclear/immunology , Antirheumatic Agents/therapeutic use , Autoimmune Diseases/epidemiology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Glucocorticoids/therapeutic use , Heart Block/epidemiology , Heart Block/immunology , Humans , Hydroxychloroquine/therapeutic use , Infant, Newborn , Interferon Type I/immunology , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/immunology , Pregnancy , Pregnancy Complications/drug therapy , Pregnancy Complications/epidemiology , Risk Factors , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/epidemiology , Sjogren's Syndrome/immunology , TranscytosisABSTRACT
Systemic sclerosis, a severe inflammatory autoimmune disease, shares a common thread with cancer through the underlying mechanism of inflammation. This inflammatory milieu not only drives the immune dysregulation characteristic of autoimmune diseases but also plays a pivotal role in the pathogenesis of cancer. Among the cellular components involved, B cells have emerged as key players in hematologic tumor and autoimmune disease, contributing to immune dysregulation and persistent tissue fibrosis in systemic sclerosis, as well as tumor progression and immune evasion in cancer. Consequently, novel therapeutic strategies targeting B cells hold promise in both conditions. Recent exploration of CD19 CAR T cells in severe systemic sclerosis patients has shown great potential, but also introduced possible risks and drawbacks associated with viral vectors, prolonged CAR T cell persistence, lengthy production timelines, high costs, and the necessity of conditioning patients with organotoxic and fertility-damaging chemotherapy. Given these challenges, alternative CD19-depleting approaches are of high interest for managing severe systemic autoimmune diseases. Here, we present the pioneering use of blinatumomab, a bispecific anti-CD3/anti-CD19 T cell engager in a patient with progressive, severe systemic sclerosis, offering a promising alternative for such challenging cases.
Subject(s)
Antibodies, Bispecific , Antigens, CD19 , Scleroderma, Systemic , Humans , Antibodies, Bispecific/therapeutic use , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Antigens, CD19/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Female , CD3 Complex/immunology , CD3 Complex/metabolism , Middle Aged , Immunotherapy, Adoptive/methodsABSTRACT
Memory B cells (mBCs) are characterized by their long-term stability, fast reactivation, and capability to rapidly differentiate into antibody-secreting cells (ASCs). However, the role of T cells in the differentiation of mBCs, in contrast to naive B cells, remains to be delineated. We study the role of T cells in mBC responses, using CD40L stimulation and autologous T-B co-cultures. Our results showed that increased CD40L levels led to a selective increased proliferation of IgM+ mBC, which did not class-switched, resulting in higher frequencies of IgM+ ASCs and a lower frequency of IgG+ ASCs. The IgG+/IgA+ mBCs were unaffected. We further compared the transcription of immune-related genes in IgM+ and IgG+ pre-plasmablasts cultured at high (500 ng/mL) and low (50 ng/mL) CD40L levels. In response to increased CD40L levels, both populations exhibited a core response to genes related to activation (TRAF1, AKT3, CD69, and CD80). However, they differed in genes related to cytokine/chemokine/homing interactions (CCL3/4/17, LTA, NKX2-3, BCL2 and IL21R) and cell-cell interactions (HLADR, CD40, and ICOSL), which were largely confined to IgG+ cells. Our findings revealed that in co-cultures with a high T-ratio, the response was similar to that found in cultures with high CD40L levels. These results suggest that IgG+ mBCs have a greater capacity for proliferation and T cell interaction, and weaker migration capabilities, leading to a preference for an IgG response over IgM in the short term. This adaptable response could fine-tune the memory repertoire with different functions of IgG versus IgM mBCs.
Subject(s)
CD40 Ligand , Immunoglobulin G , Immunoglobulin M , Memory B Cells , T-Lymphocytes , CD40 Ligand/metabolism , CD40 Ligand/immunology , Humans , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Immunoglobulin G/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Memory B Cells/immunology , Memory B Cells/metabolism , Cell Communication/immunology , Coculture Techniques , Immunologic Memory , Lymphocyte Activation/immunology , Cells, Cultured , Cell Differentiation/immunology , Cell ProliferationABSTRACT
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Mice , Animals , Humans , Toll-Like Receptor 7/genetics , Autoimmunity/genetics , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 8 , Toll-Like Receptor 3/metabolism , Lupus Erythematosus, Systemic/genetics , Membrane Transport ProteinsABSTRACT
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Subject(s)
Antigens, CD19 , Bone Marrow , Interleukins , Plasma Cells , Adult , Female , Humans , Male , Middle Aged , Antibody-Producing Cells/immunology , Antigens, CD19/immunology , Antigens, CD19/metabolism , B-Lymphocytes/immunology , Bone Marrow/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/cytology , COVID-19/immunology , COVID-19/virology , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Immunity, Humoral/immunology , Interleukins/immunology , Interleukins/metabolism , Plasma Cells/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , VaccinationABSTRACT
Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.
Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Sjogren's Syndrome , Humans , Sjogren's Syndrome/genetics , Sjogren's Syndrome/metabolism , T-Lymphocytes/metabolism , Down-Regulation/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolismABSTRACT
Background: Vaccination is considered as most efficient strategy in controlling SARS-CoV-2 pandemic spread. Nevertheless, patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) are at increased risk to fail humoral and cellular responses upon vaccination. The ability to predict vaccination responses is essential to guide adequate safety and optimal protection in these patients. Methods: B- and T- cell data before vaccination were evaluated for characteristics predicting vaccine responses in altogether 15 patients with autoimmune inflammatory rheumatic diseases receiving RTX. Eleven patients with rheumatoid arthritis (RA) on other therapies, 11 kidney transplant recipients (KTR) on regular immunosuppression and 15 healthy controls (HC) served as controls. A multidimensional analysis of B cell subsets via UMAP algorithm and a correlation matrix were performed in order to identify predictive markers of response in patients under RTX therapy. Results: Significant differences regarding absolute B cell counts and specific subset distribution pattern between the groups were identified at baseline. In this context, the majority of B cells from vaccination responders of the RTX group (RTX IgG+) were naïve and transitional B cells, whereas vaccination non-responders (RTX IgG-) carried preferentially plasmablasts and double negative (CD27-IgD-) B cells. Moreover, there was a positive correlation between neutralizing antibodies and B cells expressing HLA-DR and CXCR5 as well as an inverse correlation with CD95 expression and CD21low expression by B cells among vaccination responders. Summary: Substantial repopulation of the naïve B cell compartment after RTX therapy appeared to be essential for an adequate vaccination response, which seem to require the additional capability of antigen presentation and germinal center formation. Moreover, expression of exhaustion markers represent negative predictors of vaccination responses.
Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , Immunoglobulin G , Rituximab/therapeutic use , SARS-CoV-2 , Vaccination/methodsABSTRACT
Background: Durable vaccine-mediated immunity relies on the generation of long-lived plasma cells and memory B cells (MBCs), differentiating upon germinal center (GC) reactions. SARS-CoV-2 mRNA vaccination induces a strong GC response in healthy volunteers (HC), but limited data is available about response longevity upon rituximab treatment. Methods: We evaluated humoral and cellular responses upon 3rd vaccination in seven patients with rheumatoid arthritis (RA) who initially mounted anti-spike SARS-CoV-2 IgG antibodies after primary 2x vaccination and got re-exposed to rituximab (RTX) 1-2 months after the second vaccination. Ten patients with RA on other therapies and ten HC represented the control groups. As control for known long-lived induced immunity, we analyzed humoral and cellular tetanus toxoid (TT) immune responses in steady-state. Results: After 3rd vaccination, 5/7 seroconverted RTX patients revealed lower anti-SARS-CoV-2 IgG levels but similar neutralizing capacity compared with HC. Antibody levels after 3rd vaccination correlated with values after 2nd vaccination. Despite significant reduction of circulating total and antigen-specific B cells in RTX re-exposed patients, we observed the induction of IgG+ MBCs upon 3rd vaccination. Notably, only RTX treated patients revealed a high amount of IgA+ MBCs before and IgA+ plasmablasts after 3rd vaccination. IgA+ B cells were not part of the steady state TT+ B cell pool. TNF-secretion and generation of effector memory CD4 spike-specific T cells were significantly boosted upon 3rd vaccination. Summary: On the basis of pre-existing affinity matured MBCs within primary immunisation, RTX re-exposed patients revealed a persistent but atypical GC immune response accompanied by boosted spike-specific memory CD4 T cells upon SARS-CoV-2 recall vaccination.
Subject(s)
Arthritis, Rheumatoid , COVID-19 , Antibodies, Viral , COVID-19 Vaccines , Germinal Center , Humans , Immunoglobulin A , Immunoglobulin G , Rituximab , SARS-CoV-2 , VaccinationABSTRACT
OBJECTIVE: Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast and IgD-CD27- double-negative B cell populations. Previous studies showed that double-negative B cells represent a heterogeneous subset, and further characterization is needed. METHODS: We analyzed 2 independent cohorts of healthy donors and SLE patients, using a combined approach of flow cytometry (for 16 healthy donors and 28 SLE patients) and mass cytometry (for 18 healthy donors and 24 SLE patients) and targeted RNA-Seq analysis. To compare B cell subset formation during the acute immune response versus that during autoimmune disease, we investigated healthy donors at various time points after receipt of the BNT162b2 messenger RNA COVID-19 vaccine and patients with acute SARS-CoV-2 infection, using flow cytometry. RESULTS: We found that IgD-CD27+ switched and atypical IgD-CD27- memory B cells, the levels of which were increased in SLE patients, represented heterogeneous populations composed of 3 different subsets each. CXCR5+CD19intermediate , CXCR5-CD19high , and CXCR5-CD19low populations were found in the switched memory and double-negative compartments, suggesting the relatedness of IgD-CD27+ and IgD-CD27- B cells. We characterized a hitherto unknown and antigen-experienced CXCR5-CD19low subset that was enhanced in SLE patients, had a plasmablast phenotype with diminished B cell receptor responsiveness, and expressed CD38, CD95, CD71, PRDM1, XBP1, and IRF4. Levels of CXCR5-CD19low subsets were increased and correlated with plasmablast frequencies in SLE patients and in healthy donors who received BNT162b2, suggesting their interrelationship and contribution to plasmacytosis. The detection of CXCR5-CD19low B cells among both CD27+ and CD27- populations calls into question the role of CD27 as a reliable marker of B cell differentiation. CONCLUSION: Our data suggest that CXCR5-CD19low B cells are precursors of plasmablasts. Thus, cotargeting this subset may have therapeutic value in SLE.
Subject(s)
B-Lymphocyte Subsets , COVID-19 , Lupus Erythematosus, Systemic , Antigens, CD19/genetics , Antigens, CD19/metabolism , B-Lymphocyte Subsets/metabolism , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunoglobulin D , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Phenotype , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , SARS-CoV-2ABSTRACT
Antibody-secreting cells (ASCs) contribute to immunity through production of antibodies and cytokines. Identification of specific markers of ASC would allow selective targeting of these cells in several disease contexts. Here, we performed an unbiased, large-scale protein screening, and identified twelve new molecules that are specifically expressed by murine ASCs. Expression of these markers, particularly CD39, CD81, CD130, and CD326, is stable and offers an improved resolution for ASC identification. We accessed their expression in germ-free conditions and in T cell deficient mice, showing that at least in part their expression is controlled by microbial- and T cell-derived signals. Further analysis of lupus mice revealed the presence of a subpopulation of LAG-3- plasma cells, co-expressing high amounts of CD39 and CD326 in the bone marrow. This population was IgM+ and correlated with IgM anti-dsDNA autoantibodies in sera. Importantly, we found that CD39, CD81, CD130, and CD326 are also expressed by human peripheral blood and bone marrow ASCs. Our data provide innovative insights into ASC biology and function in mice and human, and identify an intriguing BM specific CD39++CD326++ ASC subpopulation in autoimmunity.
Subject(s)
Bone Marrow , Plasma Cells , Animals , Antibodies, Antinuclear , Antibody-Producing Cells , Biomarkers/metabolism , Bone Marrow/metabolism , Humans , Immunoglobulin M , Mice , Plasma Cells/metabolismABSTRACT
OBJECTIVE: Patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy are at higher risk of poor COVID-19 outcomes and show substantially impaired humoral immune response to anti-SARS-CoV-2 vaccine. However, the complex relationship between antigen-specific B cells and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. METHODS: Antibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 patients with rheumatoid arthritis (RA) or antineutrophil cytoplasmic antibody-associated vasculitis receiving RTX, 12 patients with RA receiving other therapies, and 30 healthy controls after SARS-CoV-2 vaccination with either messenger RNA or vector-based vaccines. RESULTS: A minimum of 10 B cells per microliter (0.4% of lymphocytes) in the peripheral circulation appeared to be required for RTX-treated patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX-treated patients who lacked IgG seroconversion showed reduced receptor-binding domain-positive B cells (P = 0.0005), a lower frequency of Tfh-like cells (P = 0.0481), as well as fewer activated CD4 (P = 0.0036) and CD8 T cells (P = 0.0308) compared to RTX-treated patients who achieved IgG seroconversion. Functionally relevant B cell depletion resulted in impaired interferon-γ secretion by spike-specific CD4 T cells (P = 0.0112, r = 0.5342). In contrast, antigen-specific CD8 T cells were reduced in both RA patients and RTX-treated patients, independently of IgG formation. CONCLUSION: In RTX-treated patients, a minimum of 10 B cells per microliter in the peripheral circulation is a candidate biomarker for a high likelihood of an appropriate cellular and humoral response after SARS-CoV-2 vaccination. Mechanistically, the data emphasize the crucial role of costimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B cell and plasma cell differentiation.
Subject(s)
Arthritis, Rheumatoid , COVID-19 , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cell Count , Humans , Immunity, Humoral , Immunoglobulin G , Rituximab/therapeutic use , SARS-CoV-2 , Vaccination/methodsABSTRACT
Circulating CD11c+ B cells are a key phenomenon in certain types of autoimmunity but have also been described in the context of regular immune responses (i.e., infections, vaccination). Using mass cytometry to profile 46 different markers on individual immune cells, we systematically initially confirmed the presence of increased CD11c+ B cells in the blood of systemic lupus erythematosus (SLE) patients. Notably, significant differences in the expression of CD21, CD27, and CD38 became apparent between CD11c- and CD11c+ B cells. We observed direct correlation of the frequency of CD21-CD27- B cells and CD21-CD38- B cells with CD11c+ B cells, which were most pronounced in SLE compared to primary Sjögren's syndrome patients (pSS) and healthy donors (HD). Thus, CD11c+ B cells resided mainly within memory subsets and were enriched in CD27-IgD-, CD21-CD27-, and CD21-CD38- B cell phenotypes. CD11c+ B cells from all donor groups (SLE, pSS, and HD) showed enhanced CD69, Ki-67, CD45RO, CD45RA, and CD19 expression, whereas the membrane expression of CXCR5 and CD21 were diminished. Notably, SLE CD11c+ B cells showed enhanced expression of the checkpoint molecules CD86, PD1, PDL1, CD137, VISTA, and CTLA-4 compared to HD. The substantial increase of CD11c+ B cells with a CD21- phenotype co-expressing distinct activation and checkpoint markers, points to a quantitative increased alternate (extrafollicular) B cell activation route possibly related to abnormal immune regulation as seen under the striking inflammatory conditions of SLE which shows a characteristic PD-1/PD-L1 upregulation.
Subject(s)
Autoimmunity , B-Lymphocytes/immunology , CD11c Antigen/blood , Flow Cytometry , Immunophenotyping , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation , Sjogren's Syndrome/immunology , ADP-ribosyl Cyclase 1/blood , B-Lymphocytes/metabolism , B7-H1 Antigen/blood , Biomarkers/blood , Case-Control Studies , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Membrane Glycoproteins/blood , Phenotype , Programmed Cell Death 1 Receptor/blood , Receptors, Complement 3d/blood , Sjogren's Syndrome/blood , Sjogren's Syndrome/diagnosis , Tumor Necrosis Factor Receptor Superfamily, Member 7/bloodABSTRACT
Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.
Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host , Kidney Transplantation , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/immunology , Female , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Male , Middle Aged , Renal Dialysis , SARS-CoV-2 , Transplant RecipientsABSTRACT
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.