Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543207

ABSTRACT

This study focuses on how to define an Analytical Target Profile (ATP) which is intended for use in practice and on facilitating the selection of in vitro release test (IVRT) technology for diclofenac sodium topical hydrogel and cream. The implementation involves incorporating the new draft guidelines of the International Council for Harmonisation (ICH Q14) and USP (United States Pharmacopeia) Chapter 1220. Four IVRT apparatuses were compared (USP Apparatus II with immersion cell, USP Apparatus IV with semisolid adapter, static vertical diffusion cell, and a new, in-house-developed flow-through diffusion cell) with the help of the ATP. Performance characteristics such as accuracy, precision, cumulative amount released at the end of the IVRT experiment, and robustness were investigated. We found that the best apparatus for developing IVRT quality control (QC) tests in both cases was USP II with an immersion cell. All four different IVRT apparatuses were compared with each other and with the data found in the literature.

2.
Pharmaceutics ; 14(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456541

ABSTRACT

The aim of our study was to adapt the analytical quality by design (AQbD) approach to design an effective in vitro release test method using USP apparatus IV with a semi-solid adapter (SSA) for diclofenac sodium hydrogel. The analytical target profile (ATP) of the in vitro release test and ultra-high-performance liquid chromatography were defined; the critical method attributes (CMAs) (min. 70% of the drug should be released during the test, six time points should be obtained in the linear portion of the drug release profile, and the relative standard deviation of the released drug should not be over 10%) were selected. An initial risk assessment was carried out, in which the CMAs (ionic strength, the pH of the media, membrane type, the rate of flow, the volume of the SSA (sample amount), the individual flow rate of cells, drug concentration %, and the composition of the product) were identified. With the results, it was possible to determine the high-risk parameters of the in vitro drug release studies performed with the USP apparatus IV with SSA, which were the pH of the medium and the sample weight of the product. Focusing on these parameters, we developed a test protocol for our hydrogel system.

SELECTION OF CITATIONS
SEARCH DETAIL