Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 172(4): 825-840.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29336888

ABSTRACT

Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.


Subject(s)
Apolipoproteins E/immunology , Immunity, Innate , Liver X Receptors/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms, Experimental/immunology , Animals , Apolipoproteins E/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Female , Liver X Receptors/genetics , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Myeloid-Derived Suppressor Cells/pathology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Xenograft Model Antitumor Assays
2.
Nat Med ; 26(7): 1048-1053, 2020 07.
Article in English | MEDLINE | ID: mdl-32451497

ABSTRACT

Common germline variants of the APOE gene are major risk modifiers of neurodegenerative and atherosclerotic diseases1-3, but their effect on cancer outcome is poorly defined. Here we report that, in a reversal of their effect on Alzheimer's disease, the APOE4 and APOE2 variants confer favorable and poor outcomes in melanoma, respectively. Mice expressing the human APOE4 allele exhibited reduced melanoma progression and metastasis relative to APOE2 mice. APOE4 mice exhibited enhanced anti-tumor immune activation relative to APOE2 mice, and T cell depletion experiments showed that the effect of APOE genotype on melanoma progression was mediated by altered anti-tumor immunity. Consistently, patients with melanoma carrying the APOE4 variant experienced improved survival in comparison to carriers of APOE2. Notably, APOE4 mice also showed improved outcomes under PD1 immune checkpoint blockade relative to APOE2 mice, and patients carrying APOE4 experienced improved anti-PD1 immunotherapy survival after progression on frontline regimens. Finally, enhancing APOE expression via pharmacologic activation of liver X receptors, previously shown to boost anti-tumor immunity4, exhibited therapeutic efficacy in APOE4 mice but not in APOE2 mice. These findings demonstrate that pre-existing hereditary genetics can impact progression and survival outcomes of a future malignancy and warrant prospective investigation of APOE genotype as a biomarker for melanoma outcome and therapeutic response.


Subject(s)
Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Melanoma/genetics , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Disease Progression , Disease-Free Survival , Female , Genotype , Germ-Line Mutation/genetics , Germ-Line Mutation/immunology , Humans , Melanoma/immunology , Melanoma/pathology , Mice , Mice, Transgenic/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL