Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33674305

ABSTRACT

The underlying mechanisms contributing to injury-induced infection susceptibility remain poorly understood. Here, we describe a rapid increase in neutrophil cell numbers in the lungs following induction of thermal injury. These neutrophils expressed elevated levels of programmed death ligand 1 (PD-L1) and exhibited altered gene expression profiles indicative of a reparative population. Upon injury, neutrophils migrate from the bone marrow to the skin but transiently arrest in the lung vasculature. Arrested neutrophils interact with programmed cell death protein 1 (PD-1) on lung endothelial cells. A period of susceptibility to infection is linked to PD-L1+ neutrophil accumulation in the lung. Systemic treatment of injured animals with an anti-PD-L1 antibody prevented neutrophil accumulation in the lung and reduced susceptibility to infection but augmented skin healing, resulting in increased epidermal growth. This work provides evidence that injury promotes changes to neutrophils that are important for wound healing but contribute to infection susceptibility.

2.
J Infect Dis ; 195(11): 1607-17, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17471430

ABSTRACT

A chimeric protein West Nile virus (WNV) vaccine capable of delivering both innate and adaptive immune signals was designed by fusing a modified version of bacterial flagellin (STF2 Delta ) to the EIII domain of the WNV envelope protein. This fusion protein stimulated interleukin-8 production in a Toll-like receptor (TLR)-5-dependent fashion, confirming appropriate in vitro TLR5 bioactivity, and also retained critical WNV-E-specific conformation-dependent neutralizing epitopes as measured by enzyme-linked immunosorbent assay. When administered without adjuvant to C3H/HeN mice, the fusion protein elicited a strong WNV-E-specific immunoglobulin G antibody response that neutralized viral infectivity and conferred protection against a lethal WNV challenge. This potent EIII-specific immune response requires a direct linkage of EIII to STF2 Delta , given that a simple mixture of the 2 components failed to induce an antibody response or to provide protection against virus challenge. The presence of a functional TLR5 gene in vivo is also required--TLR5-deficient mice elicited only a minimal antigen-specific response. These results confirm that vaccines designed to coordinately regulate the innate and adaptive immune responses can induce protective immune responses without the need for potentially toxic adjuvants. They also support the further development of an effective WNV vaccine and novel monovalent and multivalent vaccines for related flaviviruses.


Subject(s)
Antibodies, Viral/blood , Flagellin/immunology , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Animals , Antibody Specificity , Cell Line , Flagellin/genetics , Flagellin/metabolism , Immunity, Cellular , Immunity, Innate , Mice , Mice, Inbred C3H , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Plaque Assay , West Nile Fever/virology , West Nile Virus Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL