ABSTRACT
Precision measurements of molecular transitions to highly excited states are needed in potential energy surface modeling, state-resolved chemical dynamics studies, and astrophysical spectra analysis. Selective pumping and probing of molecules are often challenging due to the high state density and weak transition moments. We present a mid-infrared and near-infrared double-resonance spectroscopy method for precision measurements. As a demonstration, Doppler-free stepwise two-photon absorption spectra of 13CO2 were recorded by pumping the fundamental transition of R14 (00011)-(00001) and probing the P15 (00041)-(00011) transition enhanced by a high-finesse optical cavity, and the transition frequencies were determined with an accuracy of a few kilohertz.