Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 115(6): 1746-1757, 2023 09.
Article in English | MEDLINE | ID: mdl-37326247

ABSTRACT

3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/genetics , Fruit/metabolism , Botrytis/metabolism , Flavonoids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Eur J Neurol ; 30(11): 3471-3477, 2023 11.
Article in English | MEDLINE | ID: mdl-37159496

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson disease (PD)-associated alterations in the gut microbiome have been observed in clinical and animal studies. However, it remains unclear whether this association reflects a causal effect in humans. METHODS: We performed two-sample bidirectional Mendelian randomization using summary statistics from the international consortium MiBioGen (N = 18,340), the Framingham Heart Study (N = 2076), and the International Parkinson's Disease Genomics Consortium for PD (33,674 cases and 449,056 controls) and PD age at onset (17,996 cases). RESULTS: Twelve microbiota features presented suggestive associations with PD risk or age at onset. Genetically increased Bifidobacterium levels correlated with decreased PD risk (odds ratio = 0.77, 95% confidence interval [CI] = 0.60-0.99, p = 0.040). Conversely, high levels of five short-chain fatty acid (SCFA)-producing bacteria (LachnospiraceaeUCG010, RuminococcaceaeUCG002, Clostridium sensustricto1, Eubacterium hallii group, and Bacillales) correlated with increased PD risk, and three SCFA-producing bacteria (Roseburia, RuminococcaceaeUCG002, and Erysipelatoclostridium) correlated with an earlier age at PD onset. Gut production of serotonin was associated with an earlier age at PD onset (beta = -0.64, 95% CI = -1.15 to -0.13, p = 0.013). In the reverse direction, genetic predisposition to PD was related to altered gut microbiota composition. CONCLUSIONS: These results support a bidirectional relationship between gut microbiome dysbiosis and PD, and highlight the role of elevated endogenous SCFAs and serotonin in PD pathogenesis. Future clinical studies and experimental evidence are needed to explain the observed associations and to suggest new therapeutic approaches, such as dietary probiotic supplementation.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Animals , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Parkinson Disease/genetics , Serotonin , Genetic Predisposition to Disease , Genome-Wide Association Study
3.
BMC Genomics ; 23(1): 60, 2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35034642

ABSTRACT

BACKGROUND: Salt damage is an important abiotic stress that affects the growth and yield of maize worldwide. As an important member of the salt overly sensitive (SOS) signal transduction pathway, the SOS3 gene family participates in the transmission of stress signals and plays a vital role in improving the salt tolerance of plants. RESULTS: In this study, we identified 59 SOS3 genes in the maize B73 genome using bioinformatics methods and genome-wide analyses. SOS3 proteins were divided into 5 different subfamilies according to the phylogenetic relationships. A close relationship between the phylogenetic classification and intron mode was observed, with most SOS3 genes in the same group sharing common motifs and similar exon-intron structures in the corresponding genes. These genes were unequally distributed on five chromosomes of B73. A total of six SOS3 genes were identified as repeated genes, and 12 pairs of genes were proven to be segmentally duplicated genes, indicating that gene duplication may play an important role in the expansion of the SOS3 gene family. The expression analysis of 10 genes that were randomly selected from different subgroups suggested that all 10 genes were significantly differentially expressed within 48 h after salt treatment, of which eight SOS3 genes showed a significant decline while Zm00001d025938 and Zm00001d049665 did not. By observing the subcellular localization results, we found that most genes were expressed in chloroplasts while some genes were expressed in the cell membrane and nucleus. CONCLUSIONS: Our study provides valuable information for elucidating the evolutionary relationship and functional characteristics of the SOS3 gene family and lays the foundation for further study of the SOS3 gene family in the maize B73 genome.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Genome, Plant , Genome-Wide Association Study , Multigene Family , Phylogeny , Plant Proteins/genetics , Salt Tolerance , Stress, Physiological , Zea mays/genetics
4.
Am J Hum Genet ; 105(1): 166-176, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31178126

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease characterized by eosinophilic intranuclear inclusions in the nervous system and multiple visceral organs. The clinical manifestation of NIID varies widely, and both familial and sporadic cases have been reported. Here we have performed genetic linkage analysis and mapped the disease locus to 1p13.3-q23.1; however, whole-exome sequencing revealed no potential disease-causing mutations. We then performed long-read genome sequencing and identified a large GGC repeat expansion within human-specific NOTCH2NLC. Expanded GGC repeats as the cause of NIID was further confirmed in an additional three NIID-affected families as well as five sporadic NIID-affected case subjects. Moreover, given the clinical heterogeneity of NIID, we examined the size of the GGC repeat among 456 families with a variety of neurological conditions with the known pathogenic genes excluded. Surprisingly, GGC repeat expansion was observed in two Alzheimer disease (AD)-affected families and three parkinsonism-affected families, implicating that the GGC repeat expansions in NOTCH2NLC could also contribute to the pathogenesis of both AD and PD. Therefore, we suggest defining a term NIID-related disorders (NIIDRD), which will include NIID and other related neurodegenerative diseases caused by the expanded GGC repeat within human-specific NOTCH2NLC.


Subject(s)
Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/pathology , Receptors, Notch/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Aged , Female , Humans , Intranuclear Inclusion Bodies/genetics , Male , Middle Aged , Neurodegenerative Diseases/genetics , Pedigree , Exome Sequencing
5.
J Hum Genet ; 67(12): 687-690, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35996014

ABSTRACT

BACKGROUND: Recent researches on Parkinson's disease (PD) pathogenesis discovered the correlation between PD and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) dysfunction and reduction of PPARGC1A gene expression. Hence, we detected PPARGC1A rare variants to clarify their effect on PD risk in a large population of PD patients in mainland China. METHODS: We applied whole-exome sequencing (WES) to 1917 patients with early-onset or familial PD and 1652 controls (WES cohort), and whole-genome sequencing (WGS) to 1962 patients with sporadic late-onset PD and 1279 controls (WGS cohort). To identify PPARGC1A rare variants, we used burden analysis to assess the relationship between PPARGC1A rare variants and PD susceptibility. RESULTS: 30 rare missense variants in the cohort WES and 21 missense variants in the cohort WGS have been detected in the study and PPARGC1A missense variants are significantly associated with early-onset and familial PD susceptibility in our study (P = 0.012), which supports evidence that PPARGC1A rare variants are involved in the onset of early-onset and familial PD. CONCLUSIONS: The study suggested that PPARGC1A rare variants may contribute to the risk of early-onset and familial PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Exome Sequencing , Cohort Studies , China/epidemiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
6.
Mov Disord ; 37(3): 545-552, 2022 03.
Article in English | MEDLINE | ID: mdl-34820915

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesias. Only one-third of PKD patients are attributed to proline-rich transmembrane protein 2 (PRRT2) mutations. OBJECTIVE: We aimed to explore the potential causative gene for PKD. METHODS: A cohort of 196 PRRT2-negative PKD probands were enrolled for whole-exome sequencing (WES). Gene Ranking, Identification and Prediction Tool, a method of case-control analysis, was applied to identify the candidate genes. Another 325 PRRT2-negative PKD probands were subsequently screened with Sanger sequencing. RESULTS: Transmembrane Protein 151 (TMEM151A) variants were mainly clustered in PKD patients compared with the control groups. 24 heterozygous variants were detected in 25 of 521 probands (frequency = 4.80%), including 18 missense and 6 nonsense mutations. In 29 patients with TMEM151A variants, the ratio of male to female was 2.63:1 and the mean age of onset was 12.93 ± 3.15 years. Compared with PRRT2 mutation carriers, TMEM151A-related PKD were more common in sporadic PKD patients with pure phenotype. There was no significant difference in types of attack and treatment outcome between TMEM151A-positive and PRRT2-positive groups. CONCLUSIONS: We consolidated mutations in TMEM151A causing PKD with the aid of case-control analysis of a large-scale WES data, which broadens the genotypic spectrum of PKD. TMEM151A-related PKD were more common in sporadic cases and tended to present as pure phenotype with a late onset. Extensive functional studies are needed to enhance our understanding of the pathogenesis of TMEM151A-related PKD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Dystonia , Membrane Proteins , Adolescent , Child , Female , Humans , Male , Chorea/genetics , Dystonia/genetics , Membrane Proteins/metabolism , Mutation/genetics , Phenotype
7.
Mov Disord ; 37(9): 1807-1816, 2022 09.
Article in English | MEDLINE | ID: mdl-36054272

ABSTRACT

BACKGROUND: The diagnostic criteria for Parkinson's disease (PD) remain complex, which is especially problematic for nonmovement disorder experts. A test is required to establish a diagnosis of PD with improved accuracy and reproducibility. OBJECTIVE: The study aimed to investigate the sensitivity and specificity of tests using sniffer dogs to diagnose PD. METHODS: A prospective, diagnostic case-control study was conducted in four tertiary medical centers in China to evaluate the accuracy of sniffer dogs to distinguish between 109 clinically established medicated patients with PD, 654 subjects without PD, 37 drug-naïve patients with PD, and 185 non-PD controls. The primary outcomes were sensitivity and specificity of sniffer dog's identification. RESULTS: In the study with patients who were medicated, when two or all three sniffer dogs yielded positive detection results in a sample tested, the index test sensitivity, specificity, and positive and negative likelihood ratios were 91% (95% CI: 84%-96%), 95% (95% CI: 93%-97%), and 19.16 (95% CI: 13.52-27.16) and 0.10 (95% CI: 0.05-0.17), respectively. The corresponding sensitivity, specificity, and positive and negative likelihood ratios in patients who were drug-naïve were 89% (95% CI: 75%-96%), 86% (95% CI: 81%-91%), and 6.6 (95% CI: 4.51-9.66) and 0.13 (95% CI: 0.05-0.32), respectively. CONCLUSIONS: Tests using sniffer dogs may be a useful, noninvasive, fast, and cost-effective method to identify patients with PD in community screening and health prevention checkups as well as in neurological practice. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Animals , Case-Control Studies , Dogs , Humans , Parkinson Disease/diagnosis , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Working Dogs
8.
Cerebellum ; 21(3): 358-367, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34264505

ABSTRACT

Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.


Subject(s)
Diffusion Tensor Imaging , Spinocerebellar Ataxias , Cerebellum , Humans , Magnetic Resonance Imaging , Pedigree , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
9.
Alzheimers Dement ; 18(12): 2725-2729, 2022 12.
Article in English | MEDLINE | ID: mdl-36016508

ABSTRACT

INTRODUCTION: Observational studies have reported inconsistent results on the relationship between age-related macular degeneration (AMD) and Alzheimer's disease (AD). Therefore, we aimed to determine whether there is a causal association between AMD and AD. METHODS: This two-sample bidirectional Mendelian randomization (MR) study evaluated causal associations between advanced AMD and AD using summary data from large genome-wide association studies. RESULTS: Genetic liability for advanced AMD showed no statistical causal association with AD risk (odds ratio [OR] = 0.999, 95% confidence interval [CI]: 0.955-1.044, P = .948). Reverse MR analysis provided little support for a causal effect of AD on advanced AMD (OR = 0.973, 95%CI: 0.938-1.008, P = .133). DISCUSSION: This MR study found no evidence to support a bidirectional causality between advanced AMD and AD. HIGHLIGHTS: We evaluated the bidirectional causal relationship between advanced AMD and AD. Advanced AMD showed no statistical causal association with risk of AD. We found no evidence to support a causal effect of AD on advanced AMD risk. The associations observed in epidemiological studies should not be considered causal.


Subject(s)
Alzheimer Disease , Macular Degeneration , Humans , Genome-Wide Association Study , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Alzheimer Disease/complications , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide/genetics , Macular Degeneration/epidemiology , Macular Degeneration/genetics
10.
Brain ; 143(1): 222-233, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31819945

ABSTRACT

Essential tremor is one of the most common movement disorders. Despite its high prevalence and heritability, the genetic aetiology of essential tremor remains elusive. Up to now, only a few genes/loci have been identified, but these genes have not been replicated in other essential tremor families or cohorts. Here we report a genetic study in a cohort of 197 Chinese pedigrees clinically diagnosed with essential tremor. Using a comprehensive strategy combining linkage analysis, whole-exome sequencing, long-read whole-genome sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal GGC repeat expansion in the 5' region of the NOTCH2NLC gene that co-segregated with disease in 11 essential tremor families (5.58%) from our cohort. Clinically, probands that had an abnormal GGC repeat expansion were found to have more severe tremor phenotypes, lower activities of daily living ability. Obvious genetic anticipation was also detected in these 11 essential tremor-positive families. These results indicate that abnormal GGC repeat expansion in the 5' region of NOTCH2NLC gene is associated with essential tremor, and provide strong evidence that essential tremor is a family of diseases with high clinical and genetic heterogeneities.


Subject(s)
Asian People/genetics , Essential Tremor/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Aged , Female , GC Rich Sequence , Genetic Linkage , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/ultrastructure , Male , Microscopy, Electron , Middle Aged , Neurodegenerative Diseases/genetics , Pedigree , Polymerase Chain Reaction , Skin/ultrastructure , Exome Sequencing , Whole Genome Sequencing
11.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348779

ABSTRACT

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.


Subject(s)
Brain/metabolism , Dopaminergic Neurons/metabolism , Mutation , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Receptors, Cell Surface/genetics , Adult , Age of Onset , Animals , Apoptosis/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/antagonists & inhibitors , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Base Sequence , Brain/pathology , Case-Control Studies , Cohort Studies , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Early Diagnosis , Female , Gene Expression , Gene Regulatory Networks , Humans , Male , Nerve Tissue Proteins/metabolism , Parents , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Parkinson Disease/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Cell Surface/metabolism , Siblings
12.
Plant Dis ; 105(2): 456-463, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32729804

ABSTRACT

Meloidogyne graminicola is one of the major plant-parasitic nematodes (PPNs) that affect rice agriculture. Rapid identification and quantification of M. graminicola in soil is crucial for early diagnosis so that measures can be taken to reduce the impact of PPN diseases and ensure food security. In this study, M. graminicola species-specific primers for conventional PCR, loop-mediated isothermal amplification (LAMP), and real-time PCR were designed based on the sequence-characterized amplified region. The primers were highly specific and sensitive, and only samples containing M. graminicola DNA showed positive results. The sensitivity of LAMP and real-time PCR (two second-stage juvenile [J2] M. graminicola in 100 g of soil) was higher than that of conventional PCR (200 J2s in 100 g of soil). A standard curve (correlation coefficient R2 = 0.970, P < 0.001) was generated by amplifying DNA extracted from 0.5 g of soil, and a significant correlation was observed between the number of M. graminicola determined by microscopic examination and that predicted from the standard curve (R2 = 0.477, P = 0.0160). In quantification analyses of M. graminicola isolated from 31 naturally infested soils, the sensitivity of LAMP and real-time PCR (22 M. graminicola in 100 g of soil) was higher than that of conventional PCR (211 M. graminicola in 100 g of soil). The conventional PCR, LAMP, and real-time PCR methods have the potential to provide a useful platform for rapid species identification according to the experimental conditions. The real-time PCR assay and standard curve can be used for quantification of M. graminicola. These newly developed assays will help to facilitate the control of these economically important PPNs.


Subject(s)
Tylenchoidea , Animals , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , Soil , Tylenchoidea/genetics
13.
J Cell Mol Med ; 24(14): 7697-7705, 2020 07.
Article in English | MEDLINE | ID: mdl-32542927

ABSTRACT

Neurite outgrowth inhibitor-B (Nogo-B) is a membrane protein which is extensively expressed in multiple organs, especially in endothelial cells and vascular smooth muscle cells of blood vessels and belongs to the reticulon protein family. Notably, its specific receptor, Nogo-B receptor (NgBR), encoded by NUS1, has been implicated in many crucial cellular processes, such as cholesterol trafficking, lipid metabolism, dolichol synthesis, protein N-glycosylation, vascular remodelling, angiogenesis, tumorigenesis and neurodevelopment. In recent years, accumulating studies have demonstrated the statistically significant changes of NgBR expression levels in human diseases, including Niemann-Pick type C disease, fatty liver, congenital disorders of glycosylation, persistent pulmonary hypertension of the newborn, invasive ductal breast carcinoma, malignant melanoma, non-small cell lung carcinoma, paediatric epilepsy and Parkinson's disease. Besides, both the in vitro and in vivo studies have shown that NgBR overexpression or knockdown contribute to the alteration of various pathophysiological processes. Thus, there is a broad development potential in therapeutic strategies by modifying the expression levels of NgBR.


Subject(s)
Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Animals , Biological Transport , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cholesterol/metabolism , Disease Susceptibility , Dolichols/biosynthesis , Gene Expression Regulation , Glycosylation , Humans , Lipid Metabolism , Nervous System/metabolism , Nogo Proteins/genetics , Nogo Proteins/metabolism , Protein Binding , Receptors, Cell Surface/chemistry , Research/trends , Signal Transduction
14.
Hum Mol Genet ; 27(4): 625-637, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29294000

ABSTRACT

Paroxysmal kinesigenic dyskinesia (PKD) is a heterogeneous movement disorder characterized by recurrent dyskinesia attacks triggered by sudden movement. PRRT2 has been identified as the first causative gene of PKD. However, it is only responsible for approximately half of affected individuals, indicating that other loci are most likely involved in the etiology of this disorder. To explore the underlying causative gene of PRRT2-negative PKD, we used a combination strategy including linkage analysis, whole-exome sequencing and copy number variations analysis to detect the genetic variants within a family with PKD. We identified a linkage locus on chromosome 12 (12p13.32-12p12.3) and detected a novel heterozygous mutation c.956 T>G (p.319 L>R) in the potassium voltage-gated channel subfamily A member 1, KCNA1. Whole-exome sequencing in another 58 Chinese patients with PKD who lacked mutations in PRRT2 revealed another novel mutation in the KCNA1 gene [c.765 C>A (p.255 N>K)] within another family. Biochemical analysis revealed that the L319R mutant accelerated protein degradation via the proteasome pathway and disrupted membrane expression of the Kv1.1 channel. Electrophysiological examinations in transfected HEK293 cells showed that both the L319R and N255K mutants resulted in reduced potassium currents and respective altered gating properties, with a dominant negative effect on the Kv1.1 wild-type channel. Our study suggests that these mutations in KCNA1 cause the Kv1.1 channel dysfunction, which leads to familial PKD. The current study further extended the genotypic spectrum of this disorder, indicating that Kv1.1 channel dysfunction maybe one of the underlying defects in PKD.


Subject(s)
Dystonia/genetics , Kv1.1 Potassium Channel/genetics , Adult , Asian People , DNA Copy Number Variations , Female , HEK293 Cells , Humans , Male , Middle Aged , Mutation/genetics , Pedigree
15.
Mov Disord ; 35(8): 1428-1437, 2020 08.
Article in English | MEDLINE | ID: mdl-32392383

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia is a spectrum of involuntary dyskinetic disorders with high clinical and genetic heterogeneity. Mutations in proline-rich transmembrane protein 2 have been identified as the major pathogenic factor. OBJECTIVES: We analyzed 600 paroxysmal kinesigenic dyskinesia patients nationwide who were identified by the China Paroxysmal Dyskinesia Collaborative Group to summarize the clinical phenotypes and genetic features of paroxysmal kinesigenic dyskinesia in China and to provide new thoughts on diagnosis and therapy. METHODS: The China Paroxysmal Dyskinesia Collaborative Group was composed of departments of neurology from 22 hospitals. Clinical manifestations and proline-rich transmembrane protein 2 screening results were recorded using unified paroxysmal kinesigenic dyskinesia registration forms. Genotype-phenotype correlation analyses were conducted in patients with and without proline-rich transmembrane protein 2 mutations. High-knee exercises were applied in partial patients as a new diagnostic test to induce attacks. RESULTS: Kinesigenic triggers, male predilection, dystonic attacks, aura, complicated forms of paroxysmal kinesigenic dyskinesia, clustering in patients with family history, and dramatic responses to antiepileptic treatment were the prominent features in this multicenter study. Clinical analysis showed that proline-rich transmembrane protein 2 mutation carriers were prone to present at a younger age and have longer attack duration, bilateral limb involvement, choreic attacks, a complicated form of paroxysmal kinesigenic dyskinesia, family history, and more forms of dyskinesia. The new high-knee-exercise test efficiently induced attacks and could assist in diagnosis. CONCLUSIONS: We propose recommendations regarding diagnostic criteria for paroxysmal kinesigenic dyskinesia based on this large clinical study of paroxysmal kinesigenic dyskinesia. The findings offered some new insights into the diagnosis and treatment of paroxysmal kinesigenic dyskinesia and might help in building standardized paroxysmal kinesigenic dyskinesia clinical evaluations and therapies. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , China , Dystonia/genetics , Humans , Male , Mutation/genetics , Nerve Tissue Proteins/genetics , Phenotype
16.
Brain ; 142(8): 2215-2229, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31199454

ABSTRACT

Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Animals , Calcium/metabolism , Gene Knock-In Techniques , Humans , Mice , Mice, Transgenic , Mutation, Missense , Pedigree
17.
J Med Genet ; 56(4): 265-270, 2019 04.
Article in English | MEDLINE | ID: mdl-30194086

ABSTRACT

BACKGROUND: The locus for familial cortical myoclonic tremor with epilepsy (FCMTE) has long been mapped to 8q24 in linkage studies, but the causative mutations remain unclear. Recently, expansions of intronic TTTCA and TTTTA repeat motifs within SAMD12 were found to be involved in the pathogenesis of FCMTE in Japanese pedigrees. We aim to identify the causative mutations of FCMTE in Chinese pedigrees. METHODS: We performed genetic linkage analysis by microsatellite markers in a five-generation Chinese pedigree with 55 members. We also used array-comparative genomic hybridisation (CGH) and next-generation sequencing (NGS) technologies (whole-exome sequencing, capture region deep sequencing and whole-genome sequencing) to identify the causative mutations in the disease locus. Recently, we used low-coverage (~10×) long-read genome sequencing (LRS) on the PacBio Sequel and Oxford Nanopore platforms to identify the causative mutations, and used repeat-primed PCR for validation of the repeat expansions. RESULTS: Linkage analysis mapped the disease locus to 8q23.3-24.23. Array-CGH and NGS failed to identify causative mutations in this locus. LRS identified the intronic TTTCA and TTTTA repeat expansions in SAMD12 as the causative mutations, thus corroborating the recently published results in Japanese pedigrees. CONCLUSIONS: We identified the pentanucleotide repeat expansion in SAMD12 as the causative mutation in Chinese FCMTE pedigrees. Our study also suggested that LRS is an effective tool for molecular diagnosis of genetic disorders, especially for neurological diseases that cannot be positively diagnosed by conventional clinical microarray and NGS technologies.


Subject(s)
Genetic Association Studies , Introns , Nerve Tissue Proteins/genetics , Pedigree , Phenotype , Tandem Repeat Sequences , Adult , Comparative Genomic Hybridization , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Female , Genetic Association Studies/methods , Humans , Male , Sequence Analysis, DNA , Exome Sequencing , Whole Genome Sequencing
18.
Opt Express ; 27(6): 8361-8374, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052655

ABSTRACT

The squeezing transfer from a squeezed vacuum injected in one cavity to the output spectrum of the other cavity in an optomechanical system is investigated. By calculating the noise spectrum of the output field, it is found that two squeezing dips appear symmetrically located about the resonant point. Besides the contribution from the destructive interference between the noise fluctuation of the input field and its optomechanically modified one, the major part of the squeezing is transferred from the squeezed vacuum injected in the cavity. Additionally, it is shown that the adverse effects of the environment temperature on the output spectrum can be strongly suppressed by the injected squeezed field. This study can be useful in quantum communications via the optomechanical interface.

19.
Mol Biol Rep ; 46(6): 5767-5776, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31385235

ABSTRACT

Quantitative real time PCR (qRT-PCR) is a nucleic acid quantitative technique and is also considered as a validation tool. The Cry1Ia36 protein isolated from Bacillus thuringiensis (Bt) strain YC-10 has high nematicidal activity against nematodes. Caenorhabditis elegans is one of the major model organisms and a readily accessible source of biological material for gene expression studies. To evaluate the expression stability of 12 candidate reference genes of C. elegans for exposing to different concentrations of Cry1Ia36 protein and different treat time, five statistical approaches (the comparative delta-Ct method, BestKeeper, NormFinder, Genorm and RefFinder) were used to evaluate each individual candidate reference gene. The results indicated that cdc-42 and F35G12.2 were the best reference genes for performing reliable gene expression normalization in the impact of Cry1Ia36 protein. In addition, when C. elegans was exposed to Cry1Ia36 protein and other nematicides, avermectin and 5-aminolevulinic acid, cdc-42 was recommended as the most reliable reference genes. Y45F10D.4 was the least stable reference genes in our experimental settings. Therefore, cdc-42 was reliable reference gene for gene expression studies in C. elegans exposed to Cry1Ia36 protein and other nematicides.


Subject(s)
Bacterial Proteins/pharmacology , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endotoxins/pharmacology , Genes, Helminth/genetics , Hemolysin Proteins/pharmacology , Animals , Bacillus thuringiensis Toxins , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression/genetics , Real-Time Polymerase Chain Reaction
20.
J Gastroenterol Hepatol ; 34(11): 1984-1991, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30932246

ABSTRACT

BACKGROUND AND AIM: Patients with Barcelona Clinic Liver Cancer stage B hepatocellular carcinoma are a heterogeneous population, and the classifications available could not predict the prognosis accurately. Herein, we proposed a new substage classification method, Scoring Method for Intermediate Stage, for precise classification and clinical guidance in hepatocellular carcinoma patients within Barcelona Clinic Liver Cancer stage B. METHODS: A total of 1026 stage B patients of hepatocellular carcinoma who underwent transcatheter arterial chemoembolization as a first-line treatment in Liver Cancer Institute, Zhongshan Hospital, Fudan University were retrospectively enrolled. The prognostic evaluation ability of the new substage classification criteria was analyzed, in comparison with the existing substage classification criteria. RESULTS: Using Scoring Method for Intermediate Stage, 1026 stage B patients were subclassified into three subgroups, based on Child-Pugh score and up-to-7 grade, as B1 (scoring 2), B2 (scoring 3 or 4), and B3 (scoring 5 or 6). The median survival time of the three substages was 29 (95% confidence interval [CI]: 25-36), 19 (95% CI: 16-21), and 10 (95% CI: 8-12) months, respectively. More favorable discrimination efficacy was identified by the new criteria in comparison with the existing substage classification criteria, including Bolondi, Kinki, MICAN, and Kim's criteria. Moreover, multivariate analyses indicated that the novel classification was highly associated with prognosis (Hazard ratio(s) = 1.63, 95% CI: 1.43-1.86, P < 0.001). CONCLUSIONS: Scoring Method for Intermediate Stage demonstrates satisfying capacity in classifying patients with stage B hepatocellular carcinoma and predicting prognosis.


Subject(s)
Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/classification , Liver Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/drug therapy , Chemoembolization, Therapeutic , Female , Humans , Liver Neoplasms/drug therapy , Male , Middle Aged , Neoplasm Staging , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL