Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(12): 2736-2754.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38016467

ABSTRACT

Extensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.


Subject(s)
Proteomics , Receptors, Aryl Hydrocarbon , Animals , Mice , DNA , Homeostasis , Intestines , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
2.
Cell ; 171(2): 273-285, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985560

ABSTRACT

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Subject(s)
Cell Death , Animals , Apoptosis , Humans , Iron/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
3.
Immunol Rev ; 321(1): 199-210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37424139

ABSTRACT

Ferroptosis is a form of iron-dependent regulated cell death characterized by the accumulation of toxic lipid peroxides, particularly in the plasma membrane, leading to lytic cell death. While it plays a crucial role in maintaining the overall health and proper functioning of multicellular organisms, it can also contribute to tissue damage and pathological conditions. Although ferroptotic damage is generally recognized as an immunostimulatory process associated with the release of damage-associated molecular patterns (DAMPs), the occurrence of ferroptosis in immune cells or the release of immunosuppressive molecules can result in immune tolerance. Consequently, there is ongoing exploration of targeting the upstream signals or the machinery of ferroptosis to therapeutically enhance or inhibit the immune response. In addition to introducing the core molecular mechanisms of ferroptosis, we will focus on the immune characteristics of ferroptosis in pathological conditions, particularly in the context of infection, sterile inflammation, and tumor immunity.


Subject(s)
Ferroptosis , Humans , Cell Death , Immune Tolerance , Immunosuppression Therapy , Immunization
4.
Trends Immunol ; 45(4): 274-287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494365

ABSTRACT

Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.


Subject(s)
Immunity, Innate , Lipopolysaccharides , Animals , Humans , Inflammasomes/metabolism , Caspases/metabolism , Mammals
5.
Immunity ; 49(4): 740-753.e7, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30314759

ABSTRACT

Caspase-11, a cytosolic endotoxin (lipopolysaccharide: LPS) receptor, mediates pyroptosis, a lytic form of cell death. Caspase-11-dependent pyroptosis mediates lethality in endotoxemia, but it is unclear how LPS is delivered into the cytosol for the activation of caspase-11. Here we discovered that hepatocyte-released high mobility group box 1 (HMGB1) was required for caspase-11-dependent pyroptosis and lethality in endotoxemia and bacterial sepsis. Mechanistically, hepatocyte-released HMGB1 bound LPS and targeted its internalization into the lysosomes of macrophages and endothelial cells via the receptor for advanced glycation end-products (RAGE). Subsequently, HMGB1 permeabilized the phospholipid bilayer in the acidic environment of lysosomes. This resulted in LPS leakage into the cytosol and caspase-11 activation. Depletion of hepatocyte HMGB1, inhibition of hepatocyte HMGB1 release, neutralizing extracellular HMGB1, or RAGE deficiency prevented caspase-11-dependent pyroptosis and death in endotoxemia and bacterial sepsis. These findings indicate that HMGB1 interacts with LPS to mediate caspase-11-dependent pyroptosis in lethal sepsis.


Subject(s)
Caspases/immunology , Endotoxins/immunology , HMGB1 Protein/immunology , Pyroptosis/immunology , Sepsis/immunology , Animals , Caspases/genetics , Caspases/metabolism , Cells, Cultured , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endotoxins/metabolism , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor for Advanced Glycation End Products/immunology , Receptor for Advanced Glycation End Products/metabolism , Sepsis/genetics , Sepsis/metabolism , THP-1 Cells
6.
J Immunol ; 211(4): 518-526, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549395

ABSTRACT

Immunometabolism is an interdisciplinary field that focuses on the relationship between metabolic pathways and immune responses. Dysregulated immunometabolism contributes to many pathological settings, such as cytokine storm or immune tolerance. Aconitate decarboxylase 1 (ACOD1, also known as immunoresponsive gene 1), the mitochondrial enzyme responsible for catalyzing itaconate production, was originally identified as a bacterial LPS-inducible gene involved in innate immunity in mouse macrophages. We now know that the upregulation of ACOD1 expression in immune or nonimmune cells plays a context-dependent role in metabolic reprogramming, signal transduction, inflammasome regulation, and protein modification. The emerging function of ACOD1 in inflammation and infection is a double-edged sword. In this review, we discuss how ACOD1 regulates anti-inflammatory or proinflammatory responses in an itaconate-dependent or -independent manner. Further understanding of ACOD1 expression and function may pave the way for the development of precision therapies for inflammatory diseases.


Subject(s)
Macrophages , Succinates , Animals , Mice , Immunity, Innate , Inflammation
7.
Mol Cancer ; 23(1): 89, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702722

ABSTRACT

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Subject(s)
Ferroptosis , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Ferroptosis/genetics , Ferroptosis/drug effects , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
8.
Mol Carcinog ; 63(8): 1515-1527, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38751020

ABSTRACT

Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Drug Resistance, Neoplasm , Ovarian Neoplasms , Paclitaxel , Vacuolar Proton-Translocating ATPases , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cell Line, Tumor , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Hydrogen-Ion Concentration , Cell Proliferation/drug effects
9.
Hepatology ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37013919

ABSTRACT

The most widespread type of liver cancer, HCC, is associated with disabled cellular death pathways. Despite therapeutic advancements, resistance to current systemic treatments (including sorafenib) compromises the prognosis of patients with HCC, driving the search for agents that might target novel cell death pathways. Ferroptosis, a form of iron-mediated nonapoptotic cell death, has gained considerable attention as a potential target for cancer therapy, especially in HCC. The role of ferroptosis in HCC is complex and diverse. On one hand, ferroptosis can contribute to the progression of HCC through its involvement in both acute and chronic liver conditions. In contrast, having ferroptosis affect HCC cells might be desirable. This review examines the role of ferroptosis in HCC from cellular, animal, and human perspectives while examining its mechanisms, regulation, biomarkers, and clinical implications.

10.
Trends Immunol ; 42(6): 508-522, 2021 06.
Article in English | MEDLINE | ID: mdl-33906793

ABSTRACT

Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.


Subject(s)
Sepsis , Shock, Septic , Animals , Caspases, Initiator/metabolism , Intracellular Signaling Peptides and Proteins , Phosphate-Binding Proteins , Pyroptosis
11.
Arch Toxicol ; 98(4): 1025-1041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383612

ABSTRACT

Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.


Subject(s)
Ferroptosis , Neoplasms , Humans , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Gene Expression Regulation , Apoptosis , Endoplasmic Reticulum Stress , Neoplasms/drug therapy , Neoplasms/genetics
12.
Br J Cancer ; 128(2): 190-205, 2023 01.
Article in English | MEDLINE | ID: mdl-36229582

ABSTRACT

Hepatocellular carcinoma is the most prevalent form of primary liver cancer with a multifactorial aetiology comprising genetic, environmental, and behavioural factors. Evading cell death is a defining hallmark of hepatocellular carcinoma, underpinning tumour growth, progression, and therapy resistance. Ferroptosis is a form of nonapoptotic cell death driven by an array of cellular events, including intracellular iron overload, free radical production, lipid peroxidation and activation of various cell death effectors, ultimately leading to rupture of the plasma membrane. Although induction of ferroptosis is an emerging strategy to suppress hepatocellular carcinoma, malignant cells manage to develop adaptive mechanisms, conferring resistance to ferroptosis and ferroptosis-inducing drugs. Herein, we aim at elucidating molecular mechanisms and signalling pathways involved in ferroptosis and offer our opinions on druggable targets and new therapeutic strategy in an attempt to restrain the growth and progression of hepatocellular carcinoma through induction of ferroptotic cell death.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Iron/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Death
13.
Cytokine ; 169: 156317, 2023 09.
Article in English | MEDLINE | ID: mdl-37542833

ABSTRACT

Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.


Subject(s)
Inflammation , Proteins , Humans , Sequestosome-1 Protein/metabolism , Inflammation/metabolism , Proteins/metabolism , Protein Processing, Post-Translational , Proteolysis , Autophagy
14.
J Biomed Sci ; 30(1): 53, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430371

ABSTRACT

The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.


Subject(s)
COVID-19 , Transcriptome , Humans , COVID-19/genetics , Liver , Hepatocytes , Gene Expression Profiling
15.
Acta Pharmacol Sin ; 44(12): 2537-2548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37528233

ABSTRACT

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 µM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Proteasome Endopeptidase Complex , Animals , Mice , Humans , Proteasome Endopeptidase Complex/metabolism , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Mice, Nude , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Ubiquitin Thiolesterase
16.
Cell Mol Life Sci ; 79(5): 228, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35391558

ABSTRACT

BACKGROUND: The AU-rich element (ARE)-binding factor 1 (AUF1) acts as a switch for septic shock, although its underlying mechanisms remain largely unknown. In this study, we examined the biological significance and potential molecular mechanism of AUF1 in regulating ferroptosis in sepsis-induced acute lung injury (ALI). METHODS: Alveolar epithelial cells (AECs) challenged with ferroptosis-inducing compounds and cecum ligation and puncture (CLP)-induced ALI were used as the in vitro and in vivo model, respectively. The stability of AUF1 and its degradation by ubiquitin-proteasome pathway were examined by cycloheximide chase analysis and co-immunoprecipitation assay. The regulation of AUF1 on nuclear factor E2-related factor 2 (NRF2) and activation transcription factor 3 (ATF3) was explored by RNA immunoprecipitation (RIP), RNA pull-down, and mRNA stability assays. Functionally, the effects of altering AUF1, NRF2 or ATF3 on ferroptosis in AECs or ALI mice were evaluated by measuring cell viability, lipid peroxidation, iron accumulation, and total glutathione level. RESULTS: AUF1 was down-regulated in AECs challenged with ferroptosis-inducing compounds, both on mRNA and protein levels. The E3 ubiquitin ligase FBXW7 was responsible for protein degradation of AUF1 during ferroptosis. By up-regulating NRF2 and down-regulating ATF3, AUF1 antagonized ferroptosis in AECs in vitro. In the CLP-induced ALI model, the survival rate of AUF1 knockout mice was significantly reduced and the lung injuries were aggravated, which were related to the enhancement of lung ferroptosis. CONCLUSIONS: FBXW7 mediates the ubiquitination and degradation of AUF1 in ferroptosis. AUF1 antagonizes ferroptosis by regulating NRF2 and ATF3 oppositely. Activating AUF1 pathway may be beneficial to the treatment of sepsis-induced ALI.


Subject(s)
Activating Transcription Factor 3 , Acute Lung Injury , Ferroptosis , Heterogeneous Nuclear Ribonucleoprotein D0 , NF-E2-Related Factor 2 , Sepsis , Activating Transcription Factor 3/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Animals , F-Box-WD Repeat-Containing Protein 7/metabolism , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , Mice , NF-E2-Related Factor 2/metabolism , RNA , Sepsis/complications
17.
Biochem Biophys Res Commun ; 606: 68-74, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35339754

ABSTRACT

Cyclophosphamide is an alkylating agent used to treat a variety of cancers, including leukemia. Here, we show a previously unrecognized role of cyclophosphamide in triggering the protein degradation of glutathione peroxidase 4 (GPX4), a phospholipid hydroperoxidase that protects cells from oxidative damage. Mechanistically, we found that the ubiquitin-proteasome system, but not autophagy, mediates cyclophosphamide-induced degradation of GPX4 in human leukemia cell lines. Surprisingly, cyclophosphamide-induced degradation of GPX4 leads to caspase-independent parthanatos, but not lipid peroxidation-mediated ferroptosis, through the nuclear translocation of apoptosis-inducing factor mitochondria-associated 1 (AIFM1). Consequently, the overexpression of GPX4 or the knockdown of AIFM1 limits the anticancer activity of cyclophosphamide in vitro and in xenograft tumor models. These findings establish a new framework for understanding the central role of GPX4 in blocking oxidative cell death.


Subject(s)
Apoptosis Inducing Factor , Ferroptosis , Leukemia , Parthanatos , Phospholipid Hydroperoxide Glutathione Peroxidase , Apoptosis Inducing Factor/metabolism , Cell Line, Tumor , Cyclophosphamide/pharmacology , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
18.
PLoS Pathog ; 16(5): e1008536, 2020 05.
Article in English | MEDLINE | ID: mdl-32442210

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that has caused a worldwide pandemic of the human respiratory illness COVID-19, resulting in a severe threat to public health and safety. Analysis of the genetic tree suggests that SARS-CoV-2 belongs to the same Betacoronavirus group as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Although the route for viral transmission remains a mystery, SARS-CoV-2 may have originated in an animal reservoir, likely that of bat. The clinical features of COVID-19, such as fever, cough, shortness of breath, and fatigue, are similar to those of many acute respiratory infections. There is currently no specific treatment for COVID-19, but antiviral therapy combined with supportive care is the main strategy. Here, we summarize recent progress in understanding the epidemiological, virological, and clinical characteristics of COVID-19 and discuss potential targets with existing drugs for the treatment of this emerging zoonotic disease.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Animals , Betacoronavirus/classification , COVID-19 , Coronavirus Infections/physiopathology , Genome, Viral , Humans , Pandemics , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/virology
19.
J Immunol ; 205(5): 1189-1197, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32839211

ABSTRACT

Thermal injury is often associated with a proinflammatory state resulting in serious complications. After a burn, the innate immune system is activated with subsequent immune cell infiltration and cytokine production. Although the innate immune response is typically beneficial, an excessive activation leads to cytokine storms, multiple organ failure, and even death. This overwhelming immune response is regulated by damage-associated molecular patterns (DAMPs). DAMPs are endogenous molecules that are actively secreted by immune cells or passively released by dead or dying cells that can bind to pathogen recognition receptors in immune and nonimmune cells. Recent studies involving animal models along with human studies have drawn great attention to the possible pathological role of DAMPs as an immune consequence of thermal injury. In this review, we outline DAMPs and their function in thermal injury, shedding light on the mechanism of sterile inflammation during tissue injury and identifying new immune targets for treating thermal injury.


Subject(s)
Burns/immunology , Immune System/immunology , Immunity, Innate/immunology , Inflammation/immunology , Animals , Cytokine Release Syndrome/immunology , Humans
20.
Acta Pharmacol Sin ; 43(8): 2128-2138, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34893683

ABSTRACT

The ubiquitin-proteasome system (UPS) is essential for maintaining cell homeostasis by orchestrating the protein degradation, but is impaired in various diseases, including cancers. Several proteasome inhibitors, such as bortezomib, are currently used in cancer treatment, but associated toxicity limits their widespread application. Recently metal complex-based drugs have attracted great attention in tumor therapy; however, their application is hindered by low water-solubility and poor absorbency. Herein, we synthesized a new type of gold (I) complex named Na-AuPT, and further characterized its anticancer activity. Na-AuPT is highly water-soluble (6 mg/mL), and it was able to potently inhibit growth of a panel of 11 cancer cell lines (A549, SMMC7721, H460, HepG2, BEL7402, LNCap, PC3, MGC-803, SGC-7901, U266, and K562). In A549 and SMMC7721 cells, Na-AuPT (in a range of 2.5-20 µM) inhibited the UPS function in a dose-dependent fashion by targeting and inhibiting both 20 S proteasomal proteolytic peptidases and 19 S proteasomal deubiquitinases. Furthermore, Na-AuPT induced caspase-dependent apoptosis in A549 and SMMC7721 cells, which was prevented by the metal chelator EDTA. Administration of Na-AuPT (40 mg · kg-1 · d-1, ip) in nude mice bearing A549 or SMMC7721 xenografts significantly inhibited the tumor growth in vivo, accompanied by increased levels of total ubiquitinated proteins, cleaved caspase 3 and Bax protein in tumor tissue. Moreover, Na-AuPT induced cell death of primary mononuclear cells from 5 patients with acute myeloid leukemia ex vivo with an average IC50 value of 2.46 µM. We conclude that Na-AuPT is a novel metal-based proteasome inhibitor that may hold great potential for cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Humans , Mice , Mice, Nude , Neoplasms/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Ubiquitin/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL