Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nature ; 617(7961): 519-523, 2023 05.
Article in English | MEDLINE | ID: mdl-37198309

ABSTRACT

During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.

2.
Small ; 20(4): e2304336, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712103

ABSTRACT

Recently, metal 1halide perovskites have shown compelling optoelectronic properties for both light-emitting devices and scintillation of ionizing radiation. However, conventional lead-based metal halide perovskites are still suffering from poor material stability and relatively low X-ray light yield. This work reports cadmium-based all-inorganic metal halides and systematically investigates the influence of the metal ion incorporation on the optoelectronic properties. This work introduces the bi-metal ion incorporation strategy and successfully enhances the photoluminescence quantum yield (98.9%), improves thermal stability, and extends the photoluminescence spectra, which show great potential for white light emission. In addition, the photoluminescent decay is also modulated with single metal ion incorporation, the charge carrier lifetime is successfully reduced to less than 1 µs, and the high luminescent efficiency and X-ray light yield (41 000 photons MeV-1 ) are maintained. Then, these fast scintillators are demonstrated for high-speed light communication and sensitive X-ray detection and imaging.

3.
Cytokine ; 173: 156442, 2024 01.
Article in English | MEDLINE | ID: mdl-37995395

ABSTRACT

PURPOSE: The characteristics of cytokine/chemokine(CK) profiles across different courses of chronic hepatitis B virus infection and the effects of NAs antiviral therapy on cytokine profiles remain unclear. METHODS: This report provides evidence from 383 patients with chronic HBV infection. The Luminex multiple cytokine detection technology was used to detect CK profiles. The predictive power of CKs across course of disease was assessedusing univariate analyses and with receiver operating characteristic (ROC) curves. RESULTS: Compared to healthy control (HC), expression levels of interleukin 6 (IL)-6, IL-8, IL-21, matrix metalloproteinases (MMP)-2 and tumor necrosis factor receptor (TNFR)-1 showed a significant increasing trend during chronic HBV infection. IL-23 and IL-33 increased respectively in chronic hepatitis B patients (CHB). interferon (IFN)-gamma and TNF-α changed significantly only in liver cirrhosis (LC) patients. Whereas, myeloid-related markers decreased dramatically in those with hepatocellular carcinoma (HCC). The ROC result suggests that combining IL-6, IL-8, CXCL9 and CXCL13 into a nomogram has closely correlation with HCC during chronic HBV infection. In addition, nucleotide analogues (NAs) antiviral treatments are capable of recoveringnormal liver functions and significantly reducing the viral loads, however, they seem to have a limited effect in changing CKs, especially specific antiviral factors. CONCLUSION: The differential CK and virological markers may serve as potential indicators of distinct immune statuses in chronic HBV infection. They also underscore the varying efficacy and limitations of NAs antiviral therapies. This next step would to break new ground in the optimization of current anti-HBV treatment programs although this requires further research.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus , Nucleotides , Interleukin-8 , Cytokines/metabolism , Antiviral Agents/therapeutic use
4.
Chemistry ; : e202402716, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167361

ABSTRACT

Dithiocarbamate is a key structural sequence in pharmaceuticals and agrochemicals, and its synthesis is crucial in organic chemistry. Although significant progress has been made in related synthesis research, developing a practical and universal synthesis method remains fascinating. Herein, we report a new visible-light-induced decarboxylation coupling reaction between N-hydroxyphthalimide esters and tetraalkylthiuram disulfides, which uses Ir(ppy)3 as a photocatalyst to promote the generation of corresponding decarboxylation thioacylation product-dithiocarbamates in high yields. This redox-neutral protocol uses inexpensive and readily available starting material under mild reaction conditions, exhibiting broad substrate scope and wide functional group compatibility. This method can be further used for post modification of complex natural products and bioactive drugs.

5.
Langmuir ; 40(41): 21600-21607, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39360777

ABSTRACT

Creating and unveiling chiral systems is important to the development of new materials and devices. In this study, after depositing prochiral radical molecule 3-carbamoyl-2,2,5,5-tetramethyl pyrroline-1-oxyl (CTPO) on a Au(111) substrate, 2D molecular crystals with two chiralities of CTPO molecules have been discovered. A single CTPO molecule is an achiral molecule in three-dimensional space, and it can form chiral configurations after adsorbing on the substrate. The chiralities of 2D molecular crystals originate from the chiral properties of adsorbed CTPO molecules and their assembling. Molecules with different chiralities are connected with molecular recognition through hydrogen bond interactions. Through density functional theory simulations, the hydrogen bond networks and molecular structures of this system were explored. To gain a further understanding of this system, the electronic property of CTPO/Au(111) was studied with a local density of states (LDOS) characterization. A peculiar LDOS distribution related to the vibrational excitation of the molecules was mapped at the submolecular scale. These results are useful for understanding the nature of chirality formation, 2D molecular crystal construction, and radical molecule applications.

6.
J Gastroenterol Hepatol ; 39(4): 658-666, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38251791

ABSTRACT

BACKGROUND AND AIM: Fexuprazan is a novel potassium-competitive acid blocker (P-CAB). This study aimed to explore the noninferior efficacy and safety of fexuprazan to esomeprazole in treating erosive esophagitis (EE). METHODS: This was a phase III, randomized, double-blind multicenter study. Patients with endoscopically confirmed EE were randomized to receive fexuprazan 40 mg or esomeprazole 40 mg once a daily for 4-8 weeks. The healing rates of EE, symptom response, GERD-health-related quality life (GERD-HRQL), and treatment-emergent adverse events (TEAEs) were compared between fexuprazan group and esomeprazole group. RESULTS: A total of 332 subjects were included in full analysis set (FAS) and 311 in per-protocol set (PPS). The healing rates of fexuprazan and esomeprazole groups at 8 weeks were 88.5% (146/165) and 89.0% (145/163), respectively, in FAS and 97.3% (145/149) and 97.9% (143/146), respectively, in PPS. Noninferiority of fexuprazan compared with esomeprazole according to EE healing rates at 8 weeks was demonstrated in both FAS and PPS analysis. No significant difference was found between groups in EE healing rates at 4 weeks, symptom responses, and changes of GERD-HRQL. The incidence of drug-related AEs was 19.4% (32/165) in fexuprazan arm and 19.6% (32/163) in esomeprazole arm. CONCLUSION: This study demonstrated noninferior efficacy of fexuprazan to esomeprazole in treating EE. The incidence of TEAEs was similar between fexuprazan and esomeprazole. Trial registration number NCT05813561.


Subject(s)
Amines , Esophagitis, Peptic , Gastroesophageal Reflux , Peptic Ulcer , Pyrroles , Humans , Double-Blind Method , Esomeprazole/adverse effects , Esophagitis, Peptic/drug therapy , Esophagitis, Peptic/etiology , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/complications , Peptic Ulcer/complications , Proton Pump Inhibitors/adverse effects , Treatment Outcome
7.
BMC Med Educ ; 24(1): 513, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720325

ABSTRACT

INTRODUCTION: Exercise enhances one's health and competitiveness. A strong physical fitness status can pave the way for a promising future. This study presents the time-based trends in physical fitness indicators-including height, weight, BMI, lung capacity, dash, long-distance running, and standing long jump-among medical undergraduates during their university years. Additionally, we analyzed the impact of students' physical fitness on their career paths. METHOD: We conducted a retrospective database study by collecting physical fitness test data and career paths information for 634 medical students from a university in southwestern China. These students graduated in 2022. The career paths included pursuits in further studies, employment, and unemployment. To detect differences in these aspects, we used the t-test and Chi-square test. RESULTS: Our study indicates a significant declining trend in the physical fitness of medical students during their university years. The changes observed between the first and fourth tests are as follows: Weight (kg): 58.52 ± 10.48 to 60.73 ± 12.07, P < 0.00 BMI (kg/m^2): 20.79 ± 2.74 to 21.24 ± 3.06, P < 0.00 50-m dash (s): 8.91 ± 0.99 to 9.25 ± 1.11, P < 0.00 Standing long jump (cm): 187.74 ± 30.98 to 182.59 ± 32.25, P < 0.00 800-m run for females (min): 3.84 ± 0.47 to 4.48 ± 0.85, P < 0.00 1000-m run for males (min): 3.98 ± 0.63 to 4.62 ± 0.87, P < 0.00 Sit-ups for females (count): 30.39 ± 7.5 to 29.03 ± 8.82, P < 0.00 Upon analyzing the correlation between changes in physical fitness and career paths, students with stable or decreased BMI had better post-graduation outcomes compared to students with increased BMI. CONCLUSIONS: Medical students show a declining trend in physical fitness during their undergraduate years. A good physical health status is beneficial for achieving better career paths. Medical students should place greater emphasis on physical exercise during their time in school.


Subject(s)
Physical Fitness , Students, Medical , Humans , Male , Female , Longitudinal Studies , Retrospective Studies , China , Young Adult , Career Choice , Adult , Body Mass Index , Education, Medical, Undergraduate
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 611-620, 2024 Apr 28.
Article in English, Zh | MEDLINE | ID: mdl-39019790

ABSTRACT

OBJECTIVES: The antimicrobial resistance of Staphylococcus aureus (S. aureus) has become a challenge in the treatment of infectious diseases. It is of great clinical value to discovery effective antimicrobial agents against multi-drug resistant S. aureus and its biofilms. This study aims to explore the antibacterial activity of the antiparasitic drug closantel against methicillin-resistant S. aureus and its biofilms through drug repurposing. METHODS: The sensitivity of S. aureus to closantel was assessed using microbroth dilution and disk diffusion methods. The bacteriostatic and bactericidal activities of closantel were determined by time-kill curves and colony count. Scanning electron microscopy combined with SYTOX Green and DiSC3(5) fluorescence probes were used to study the bactericidal mechanism of closantel. The influence of resistance was assessed by continuous exposure to sub-inhibitory concentrations of closantel. The anti-biofilm activity was evaluated using 96-well plates and crystal violet staining, and cytotoxicity was measured using the CCK-8 assay. RESULTS: The minimal inhibitory concentration (MIC) of closantel for both methicillin-sensitive and methicillin-resistant S. aureus ranged from 0.125 to 1.000 µg/mL. Disk diffusion tests showed that 80 µg of closantel created an inhibition zone, which increased in diameter with higher drug amounts. Sub-inhibitory concentrations (0.031 µg/mL) of closantel significantly inhibited S. aureus proliferation, reducing bacterial turbidity from 0.26±0.00 to 0.11±0.01 (t=16.06, P<0.001), with stronger inhibition at higher concentrations. Closantel at 0.25×MIC inhibited S. aureus proliferation for 12 hours, while 1×MIC inhibited it for over 24 hours, with the number of viable bacteria decreasing as the drug concentration increased. Mechanistic studies indicated that closantel effectively disrupted the integrity of S. aureus cell membranes, significantly increasing SYTOX Green and DiSC3(5) fluorescence intensity. Even after 25 days of continuous exposure to sub-inhibitory concentrations of closantel, no resistance developed. Closantel at 0.0625 µg/mL significantly inhibited biofilm formation, reducing it from 1.29±0.16 to 0.62±0.04 (t=11.62, P<0.001), showing a clear dose-dependent effect. Closantel at 2 µg/mL also significantly eradicated established biofilms, reducing biofilm mass from 1.62±0.34 to 0.51±0.39 (t=4.84, P<0.01). Additionally, closantel exhibited extremely low cytotoxicity, with half-maximal lethal concentrations for HepG2 liver cancer cells and normal LO2 liver cells both exceeding 64 µg/mL. CONCLUSIONS: Closantel exhibits strong antibacterial activity against S. aureus and its biofilm with low cytotoxicity against human cells, making it a promising candidate for new therapeutic strategies against S. aureus-related infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Salicylanilides , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Salicylanilides/pharmacology
9.
Angew Chem Int Ed Engl ; 63(3): e202315032, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38057563

ABSTRACT

The oxygen evolution reaction (OER), characterized by a four-electron transfer kinetic process, represents a significant bottleneck in improving the efficiency of hydrogen production from water electrolysis. Consequently, extensive research efforts have been directed towards identifying single-atom electrocatalysts with exceptional OER performance. Despite the comprehensive understanding of the OER mechanism, its application to other valuable synthetic reactions has been limited. Herein, we leverage the MOOH intermediate, a key species in the Mn-N-C single-atom catalyst (Mn-SA@NC), which can be cyclically delivered in the OER. We exploit this intermediate' s capability to facilitate electrophilic transfer with silane, enabling efficient silane oxidation under electrochemical conditions. The SAC electrocatalytic system exhibits remarkable performance with catalyst loadings as low as 600 ppm and an exceptional turnover number of 9132. Furthermore, the catalytic method demonstrates stability under a 10 mmol flow chemistry setup. By serving as an OER electrocatalyst, the Mn-SA@NC drives the entire reaction, establishing a practical Mn SAC-catalyzed organic electrosynthesis system. This synthesis approach not only presents a promising avenue for the utilization of electrocatalytic OER but also highlights the potential of SACs as an attractive platform for organic electrosynthesis investigations.

10.
Angew Chem Int Ed Engl ; 63(27): e202404295, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649323

ABSTRACT

Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.

11.
Mol Cell Biochem ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589861

ABSTRACT

This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-ß (TGF-ß) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-ß expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-ß protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-ß mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-ß was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-ß in cardiomyocytes, which provides a potential target for the treatment of DCM.

12.
J Org Chem ; 88(17): 12409-12420, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37578069

ABSTRACT

A Pd-catalyzed cyclization reaction of 2-(2-vinylarene)acetonitriles and isocyanides has been documented. Various naphthalen-2-amines were obtained in moderate to good yields under mild conditions. The in vitro cytotoxicity of all products was evaluated by MTT assay against seven human cancer cell lines. The results indicated that compounds 3ea, 3ma, and 3ob exhibited effective anticancer activities against the tested cancer cells.

13.
J Org Chem ; 88(9): 5760-5771, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37027491

ABSTRACT

Azoles and organoselenium compounds are pharmacologically important scaffolds in medicinal chemistry and natural products. We developed an efficient regioselective electrochemical aminoselenation reaction of 1,3-dienes, azoles, and diselenide derivatives to access selenium-containing allylazoles skeletons. This protocol is more economical and environmentally friendly and features a broad substrate scope; pyrazole, triazole, and tetrazolium were all tolerated under the standard conditions, which could be applied to the expedient synthesis of bioactive molecules and in the pharmaceutical industry.

14.
Inorg Chem ; 62(20): 7914-7920, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37147772

ABSTRACT

Scintillator is a key component in X-ray detectors that determine the performance of the devices. Nevertheless, due to the interference of the ambient light sources, scintillators are only operated in a darkroom environment currently. In this study, we designed a Cu+ and Al3+ co-doped ZnS scintillator (ZnS: Cu+, Al3+) that introduces donor-acceptor (D-A) pairs for X-ray detection. The prepared scintillator displayed an extremely high steady-state light yield (53,000 photons per MeV) upon X-ray irradiation, which is 5.3 times higher than that of the commercial Bi4Ge3O12 (BGO) scintillator, making it possible in X-ray detection with the interference of ambient light. Furthermore, the prepared material was employed as a scintillator to construct an indirect X-ray detector, which performed a superior spatial resolution (≈10.0 lp/mm) as well as persistent stability under visible light interference, demonstrating the feasibility of the scintillator in practical applications. Therefore, this research presented a convenient and useful strategy to realize X-ray detection in a non-darkroom environment.

15.
Org Biomol Chem ; 21(39): 7895-7899, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37747203

ABSTRACT

Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.

16.
Org Biomol Chem ; 21(15): 3177-3182, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36961319

ABSTRACT

The electrocatalytic ring-opening dihydroalkoxylation of N-aryl maleimides with alcohols under metal- and oxidant-free conditions is described. This electrochemical process consists of anodic single-electron transfer oxidation, cathodic radical reduction, rearrangement-ring cleavage and nucleophilic addition cascade, which employs tetrabutylammonium bromide not only as a redox catalyst but also as an efficient supporting electrolyte, and offers a practical and environmentally friendly route to ring-opening difunctionalization products.

17.
Angew Chem Int Ed Engl ; 62(33): e202308437, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37357971

ABSTRACT

Engineering living microorganisms to enhance green biomanufacturing for the development of sustainable and carbon-neutral energy strategies has attracted the interest of researchers from a wide range of scientific communities. In this study, we develop a method to achieve photosynthesis-mediated biomineralization of gold nanoparticles (AuNPs) inside Chlorella cells, where the photosynthesis-dominated reduction of Au3+ to Au0 allows the formed AuNPs to locate preferentially around the thylakoid membrane domain. In particular, we reveal that the electrons generated by the localized surface plasmon resonance of AuNPs could greatly augment hypoxic photosynthesis, which then promotes the generation and transferring of photoelectrons throughout the photosynthetic chain for augmented hydrogen production under sunlight. We demonstrate that the electrons from AuNPs could be directly transferred to hydrogenase, giving rise to an 8.3-fold enhancement of Chlorella cells hydrogen production independent of the cellular photosynthetic process under monochromatic 560 nm light irradiation. Overall, the photosynthesis-mediated intracellular biomineralization of AuNPs could contribute to a novel paradigm for functionalizing Chlorella cells to augment biomanufacturing.


Subject(s)
Chlorella , Metal Nanoparticles , Gold , Hydrogen , Biomineralization , Photosynthesis
18.
Angew Chem Int Ed Engl ; 61(30): e202204209, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35510688

ABSTRACT

Organic room-temperature long-persistent luminescent materials are promising light-emitting materials for encryption, architectural decoration, organic solar cells, and biomedical applications. However, their unstable structures and thermal- and humidity-induced emission quenching have greatly limited their utility and reliability. Here, we report a metal-free nonconjugated copolymer that possesses stable photoluminescence at both high temperature and humidity. The room-temperature long-persistent luminescence (LPL) of this copolymer lasts for more than 15 s and can be recovered in high humidity conditions by heating to remove moisture. Copolymer LPL can be achieved with various excitation wavelengths, ranging from ultraviolet to near-infrared, and the LPL color can be adjusted accordingly. The high initial LPL intensity and ultrafast filling time of the copolymer makes it suitable for low flicker alternating current-driven light-emitting diodes (AC-LEDs).

19.
Angew Chem Int Ed Engl ; 61(40): e202209749, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36000816

ABSTRACT

Improving the stability of sensitive catalytic systems is an emerging research topic in the catalysis field. However, the current design of heterogeneous catalysts mainly improves their catalytic performance. This paper presents a single-atom catalyst (SAC) strategy to improve the cobalt-catalysed fluorination of acyl chlorides. A stable Co-F intermediate can be formed through the oxidative fluorination of Co1 -N4 @NC SAC, which can replace the unstable high-valent cobalt catalytic system and avoid the use of phosphine ligands. In the SAC system, KF can be employed as a fluorinating reagent to replace the AgF, which can be applied to various substrates and scale-up conversion with high turnover numbers (TON=1.58×106 ). This work also shows that inorganic SACs have tremendous potential for organofluorine chemistry, and it provides a good reference for follow-up studies on the structure-activity relationship between catalyst design and chemical reaction mechanisms.

20.
J Org Chem ; 86(22): 16121-16127, 2021 11 19.
Article in English | MEDLINE | ID: mdl-33599123

ABSTRACT

The study reported an electrochemically mediated method for the preparation of 2,1-benzoxazoles from o-nitrophenylacetylenes. Different from the traditional electrochemical reduction of nitro to nitroso, the nitro group directly underwent a cyclization reaction with the alkyne activated by selenium cation generated by the anodic oxidation of diphenyl diselenide and finally produced the desired products.


Subject(s)
Benzoxazoles , Selenium , Catalysis , Cyclization , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL