Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Infect Immun ; 92(3): e0001224, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38358274

ABSTRACT

How the LuxS/AI-2 quorum sensing (QS) system influences the pathogenicity of K. pneumoniae is complicated by the heterogeneity of the bacterial mucoid phenotypes. This study aims to explore the LuxS-mediated regulation of the pathogenicity of K. pneumoniae with diverse mucoid phenotypes, including hypermucoid, regular-mucoid, and nonmucoid. The wild-type, luxS knockout, and complemented strains of three K. pneumoniae clinical isolates with distinct mucoid phenotypes were constructed. The results revealed the downregulation of virulence genes of regular-mucoid, and nonmucoid but not hypermucoid strains. The deletion of luxS reduced the pathogenicity of the regular-mucoid, and nonmucoid strains in mice; while in hypermucoid strain, luxS knockout reduced virulence in late growth but enhanced virulence in the early growth phase. Furthermore, the absence of luxS led the regular-mucoid and nonmucoid strains to be more sensitive to the host cell defense, and less biofilm-productive than the wild-type at both the low and high-density growth state. Nevertheless, luxS knockout enhanced the resistances to adhesion and phagocytosis by macrophage as well as serum-killing, of hypermucoid K. pneumoniae at its early low-density growth state, while it was opposite to those in its late high-density growth phase. Collectively, our results suggested that LuxS plays a crucial role in the pathogenicity of K. pneumoniae, and it is highly relevant to the mucoid phenotypes and growth phases of the strains. LuxS probably depresses the capsule in the early low-density phase and promotes the capsule, biofilm, and pathogenicity during the late high-density phase, but inhibits lipopolysaccharide throughout the growth phase, in K. pneumoniae.IMPORTANCECharacterizing the regulation of physiological functions by the LuxS/AI-2 quorum sensing (QS) system in Klebsiella pneumoniae strains will improve our understanding of this important pathogen. The genetic heterogeneity of K. pneumoniae isolates complicates our understanding of its pathogenicity, and the association of LuxS with bacterial pathogenicity has remained poorly addressed in K. pneumoniae. Our results demonstrated strain and growth phase-dependent variation in the contributions of LuxS to the virulence and pathogenicity of K. pneumoniae. Our findings provide new insights into the important contribution of the LuxS/AI-2 QS system to the networks that regulate the pathogenicity of K. pneumoniae. Our study will facilitate our understanding of the regulatory mechanisms of LuxS/AI-2 QS on the pathogenicity of K. pneumoniae under the background of their genetic heterogeneity and help develop new strategies for diminished bacterial virulence within the clinical K. pneumoniae population.


Subject(s)
Carbon-Sulfur Lyases , Klebsiella pneumoniae , Quorum Sensing , Animals , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/metabolism , Phenotype , Virulence/genetics
2.
Antimicrob Agents Chemother ; : e0142923, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742895

ABSTRACT

Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.

3.
J Antimicrob Chemother ; 79(8): 1865-1876, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842536

ABSTRACT

OBJECTIVES: To investigate the prevalence and mechanisms of ceftazidime/avibactam heteroresistance in KPC-producing Klebsiella pneumoniae (KPC-KP) isolates, as well as the role of heteroresistance in the transition of ceftazidime/avibactam susceptibility to resistance. METHODS: Clinical KPC-KP isolates were obtained from a tertiary hospital in China from 2016 to 2017 and 2019 to 2020. Antimicrobial susceptibility was determined by the broth microdilution method. Population analysis profiles were used to assess ceftazidime/avibactam heteroresistance. WGS and molecular cloning were conducted to reveal heteroresistance mechanisms and molecular characteristics. RESULTS: The findings indicated that the transition of ceftazidime/avibactam susceptibility to resistance during the treatment of KPC-KP infection is primarily attributed to the heteroresistance exhibited by KPC-KP isolates towards ceftazidime/avibactam. Among 355 ceftazidime/avibactam-susceptible KPC-KP isolates (indicating a resistance rate of 0%), 41 (11.55%) exhibited ceftazidime/avibactam heteroresistance, with the primary mechanism being the presence of KPC mutant subpopulations. These KPC variants, arising from point mutations, deletions and insertions, significantly increased ceftazidime/avibactam resistance while alongside enhanced carbapenem susceptibility. Notably, 11 new KPC variants were identified. Furthermore, four heteroresistant isolates were caused by mixed infection involving subpopulations carrying NDM-1 or NDM-5. Phylogenetic analysis indicated that the clonal spread of ST11-KL64 KPC-KP may be correlated with the prevalence of heteroresistance. CONCLUSIONS: Ceftazidime/avibactam heteroresistance, primarily driven by pre-existing KPC variants, underscores the importance of considering heteroresistance in ceftazidime/avibactam therapeutics. Awareness of these dynamics is crucial for the effective and sustainable clinical application of ceftazidime/avibactam.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Ceftazidime/pharmacology , China/epidemiology , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Microbial Sensitivity Tests , Prevalence , Whole Genome Sequencing
4.
BMC Microbiol ; 24(1): 207, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858621

ABSTRACT

BACKGROUND: Quorum sensing (QS) is a cell density-based intercellular communication system that controls virulence gene expression and biofilm formation. In Pseudomonas aeruginosa (P. aeruginosa), the LasR system sits at the top of the QS hierarchy and coordinates the expression of a series of important traits. However, the role of lasR in phage infection remains unclear. This study aims to investigate the role of lasR QS in phage infection. METHODS: The P. aeruginosa phage was isolated from sewage, and its biological characteristics and whole genome were analyzed. The adsorption receptor was identified via a phage adsorption assay. Following lasR gene knockout, the adsorption rate and bactericidal activity of phage were analyzed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to explore how lasR promoting phage infection. RESULTS: The lytic phage vB_Pae_PLY was isolated and lipopolysaccharide (LPS) was identified as its adsorption receptor. The adsorption rate and bactericidal activity of vB_Pae_PLY were reduced after lasR knockout. RT-qPCR results showed that the expression of galU, a key gene involved in LPS synthesis, was down-regulated, and several genes related to type IV pili (T4P) were also down-regulated in the lasR mutant PaΔlasR. CONCLUSIONS: The study showed that QS lasR may promote phage vB_Pae_PLY infection by involving in the synthesis of LPS and T4P. This study provides an example of QS in promoting phage infection and deepens the understanding of phage-bacteria interactions.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Quorum Sensing , Trans-Activators , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Sewage/virology , Sewage/microbiology , Gene Expression Regulation, Bacterial , Lipopolysaccharides/metabolism , Gene Knockout Techniques
5.
Microbiol Spectr ; : e0387423, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162556

ABSTRACT

Klebsiella quasipneumoniae is a potential pathogen that has not been studied comprehensively. The emergence of multidrug-resistant (MDR) K. quasipneumoniae, specifically strains resistant to tigecycline and carbapenem, presents a significant challenge to clinical treatment. This investigation aimed to characterize MDR K. quasipneumoniae strain FK8966, co-carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 by plasmids. It was observed that FK8966's MDR was primarily because of the IncHI1B-like plasmid co-carrying tmexCD2-toprJ2 and blaIMP-4, and an IncFIB(K)/IncFII(K) plasmid harboring blaNDM-1. Furthermore, the phylogenetic analysis revealed that IncHI1B-like plasmids carrying tmexCD2-toprJ2 were disseminated among different bacteria, specifically in China. Additionally, according to the comparative genomic analysis, the MDR regions indicated that the tmexCD2-toprJ2 gene cluster was inserted into the umuC gene, while blaIMP-4 was present in transposon TnAs3 linked to the class 1 integron (IntI1). It was also observed that an ΔTn3000 insertion with blaNDM-1 made a novel blaNDM-1 harboring IncFIB(K)/IncFII(K) plasmid. The antimicrobial resistance prevalence and phylogenetic analyses of K. quasipneumoniae strains indicated that FK8966 is a distinct MDR branch of K. quasipneumoniae. Furthermore, CRISPR-Cas system analysis showed that many K. quasipneumoniae CRISPR-Cas systems lacked spacers matching the two aforementioned novel resistance plasmids, suggesting that these resistance plasmids have the potential to disseminate within K. quasipneumoniae. Therefore, the spread of MDR K. quasipneumoniae and plasmids warrants further attention.IMPORTANCEThe emergence of multidrug-resistant K. quasipneumoniae poses a great threat to clinical care, and the situation is exacerbated by the dissemination of tigecycline- and carbapenem-resistant genes. Therefore, monitoring these pathogens and their resistance plasmids is urgent and crucial. This study identified tigecycline- and carbapenem-resistant K. quasipneumoniae strain, FK8966. Furthermore, it is the first study to report the coexistence of tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 in K. quasipneumoniae. Moreover, the CRISPR-Cas system of many K. quasipneumoniae lacks spacers that match the plasmids carried by FK8966, which are crucial for mediating resistance against tigecycline and carbapenems, indicating their potential to disseminate within K. quasipneumoniae.

6.
Int J Antimicrob Agents ; 64(2): 107233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824971

ABSTRACT

Acinetobacter baumannii, which is predominantly responsible for hospital-acquired infections, presents a tremendous clinical challenge due to its increasing antibiotic resistance to colistin (COL), a last-line antibiotic. As a result, the combination of antimicrobial and non-antimicrobial agents is emerging as a more popular treatment approach against infections caused by COL-resistant A. baumannii. This study administered COL and verapamil (VER), that is an antihypertensive and antiarrhythmic agent. We found that the susceptibility of A. baumannii to COL was restored both in vitro and in vivo. Scanning electron microscope and Crystal violet staining showed inhibition of the VER/COL combination on bacterial biofilm formation. Cytotoxicity assay and haemolysis test were used to confirm in vitro safety evaluation. Further experiments using propidium iodide staining revealed that the VER/COL combination improved the therapeutic efficacy of COL by modifying the permeability of bacterial membranes. As demonstrated by reactive oxygen species experiments, the drug combination caused the accumulation of bacterial reactive oxygen species and their eventual death. Additionally, VER/COL treatment significantly reduced the efflux of Rhodamine 123 (Rh123). For the first time, this study identifies the anti-hypertensive drug VER as a COL potentiator against A. baumannii, providing a potential treatment approach against A. baumannii infections and improving patient outcomes.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Colistin , Microbial Sensitivity Tests , Verapamil , Acinetobacter baumannii/drug effects , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Biofilms/drug effects , Verapamil/pharmacology , Animals , Drug Synergism , Reactive Oxygen Species/metabolism , Humans , Drug Resistance, Bacterial/drug effects , Microbial Viability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL