Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cell ; 185(22): 4049-4066.e25, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36208623

ABSTRACT

Blocking PD-1/PD-L1 signaling transforms cancer therapy and is assumed to unleash exhausted tumor-reactive CD8+ T cells in the tumor microenvironment (TME). However, recent studies have also indicated that the systemic tumor-reactive CD8+ T cells may respond to PD-1/PD-L1 immunotherapy. These discrepancies highlight the importance of further defining tumor-specific CD8+ T cell responders to PD-1/PD-L1 blockade. Here, using multiple preclinical tumor models, we revealed that a subset of tumor-specific CD8+ cells in the tumor draining lymph nodes (TdLNs) was not functionally exhausted but exhibited canonical memory characteristics. TdLN-derived tumor-specific memory (TTSM) cells established memory-associated epigenetic program early during tumorigenesis. More importantly, TdLN-TTSM cells exhibited superior anti-tumor therapeutic efficacy after adoptive transfer and were characterized as bona fide responders to PD-1/PD-L1 blockade. These findings highlight that TdLN-TTSM cells could be harnessed to potentiate anti-tumor immunotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Tumor Microenvironment , Neoplasms/therapy , Neoplasms/pathology , Lymph Nodes/pathology
2.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29706548

ABSTRACT

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genome , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Line , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomes/metabolism , DNA-Binding Proteins , Humans , Mice , Mutagenesis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Cohesins
3.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686651

ABSTRACT

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Subject(s)
Chromatin/chemistry , Genome, Human , Repressor Proteins/metabolism , Transcription, Genetic , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , DNA Packaging , Humans , RNA Polymerase II/metabolism , Salamandridae , Cohesins
4.
Cell ; 159(7): 1524-37, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25483777

ABSTRACT

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.


Subject(s)
B-Lymphocytes/metabolism , Carcinogenesis , Cytidine Deaminase/genetics , Enhancer Elements, Genetic , Animals , DNA Damage , Humans , Lymphoma/metabolism , Mice
5.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360274

ABSTRACT

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Subject(s)
B-Lymphocytes/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Promoter Regions, Genetic , Regulon , Animals , Cell Lineage , Cells, Cultured , CpG Islands , DNA Methylation , Genetic Techniques , Mice , Organ Specificity , RNA, Long Noncoding/genetics , Transcription Factors/metabolism , Transcription, Genetic
7.
EMBO J ; 40(10): e106632, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33739466

ABSTRACT

HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.


Subject(s)
HIV-1/metabolism , CD4-Positive T-Lymphocytes/metabolism , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , HEK293 Cells , Humans , Promoter Regions, Genetic/genetics
8.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35849101

ABSTRACT

The rapid development of spatial transcriptomics allows the measurement of RNA abundance at a high spatial resolution, making it possible to simultaneously profile gene expression, spatial locations of cells or spots, and the corresponding hematoxylin and eosin-stained histology images. It turns promising to predict gene expression from histology images that are relatively easy and cheap to obtain. For this purpose, several methods are devised, but they have not fully captured the internal relations of the 2D vision features or spatial dependency between spots. Here, we developed Hist2ST, a deep learning-based model to predict RNA-seq expression from histology images. Around each sequenced spot, the corresponding histology image is cropped into an image patch and fed into a convolutional module to extract 2D vision features. Meanwhile, the spatial relations with the whole image and neighbored patches are captured through Transformer and graph neural network modules, respectively. These learned features are then used to predict the gene expression by following the zero-inflated negative binomial distribution. To alleviate the impact by the small spatial transcriptomics data, a self-distillation mechanism is employed for efficient learning of the model. By comprehensive tests on cancer and normal datasets, Hist2ST was shown to outperform existing methods in terms of both gene expression prediction and spatial region identification. Further pathway analyses indicated that our model could reserve biological information. Thus, Hist2ST enables generating spatial transcriptomics data from histology images for elucidating molecular signatures of tissues.


Subject(s)
Image Processing, Computer-Assisted , Transcriptome , Eosine Yellowish-(YS) , Hematoxylin , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , RNA
9.
Nucleic Acids Res ; 48(W1): W170-W176, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32442297

ABSTRACT

Structural variants (SVs) that alter DNA sequence emerge as a driving force involved in the reorganisation of DNA spatial folding, thus affecting gene transcription. In this work, we describe an improved version of our integrated web service for structural modeling of three-dimensional genome (3D-GNOME), which now incorporates all types of SVs to model changes to the reference 3D conformation of chromatin. In 3D-GNOME 2.0, the default reference 3D genome structure is generated using ChIA-PET data from the GM12878 cell line and SVs data are sourced from the population-scale catalogue of SVs identified by the 1000 Genomes Consortium. However, users may also submit their own structural data to set a customized reference genome structure, and/or a custom input list of SVs. 3D-GNOME 2.0 provides novel tools to inspect, visualize and compare 3D models for regions that differ in terms of their linear genomic sequence. Contact diagrams are displayed to compare the reference 3D structure with the one altered by SVs. In our opinion, 3D-GNOME 2.0 is a unique online tool for modeling and analyzing conformational changes to the human genome induced by SVs across populations. It can be freely accessed at https://3dgnome.cent.uw.edu.pl/.


Subject(s)
Chromatin/chemistry , Genomic Structural Variation , Models, Molecular , Software , Chromosome Inversion , Genome, Human , Humans , Models, Genetic , Molecular Conformation , Sequence Deletion
10.
Methods ; 170: 69-74, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31629084

ABSTRACT

The three-dimensional architecture of chromatin in the nucleus is important for genome regulation and function. Advanced high-throughput sequencing-based methods have been developed for capturing chromatin interactions (Hi-C, genome-wide chromosome conformation capture) or enriching for those involving a specific protein (ChIA-PET, chromatin interaction analysis with paired-end tag sequencing). There is widespread interest in utilizing and interpreting ChIA-PET and Hi-C. We review methods for comparative ChIA-PET and Hi-C data analysis and visualization. The topics reviewed include: downloading ChIA-PET and Hi-C data from the ENCODE and 4DN portals; processing ChIA-PET data using ChIA-PIPE; processing Hi-C data using Juicer or distiller and cooler; viewing 2D contact maps using Juicebox or Higlass; viewing peaks, loops, and domains using BASIC Browser; annotating convergent and tandem CTCF loops.


Subject(s)
Chromatin Immunoprecipitation/methods , Data Analysis , Genomics/methods , Cell Line , Chromatin/genetics , Chromatin/isolation & purification , Datasets as Topic , Humans , Sequence Analysis, DNA , Software
11.
Nature ; 520(7548): 558-62, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25686607

ABSTRACT

Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a 'guardian' transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.


Subject(s)
Arthritis, Rheumatoid/genetics , Enhancer Elements, Genetic/genetics , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Janus Kinase 3/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RNA, Untranslated/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcription, Genetic/genetics , p300-CBP Transcription Factors/metabolism
12.
Proc Natl Acad Sci U S A ; 114(46): 12111-12119, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29078395

ABSTRACT

Cytokines critically control immune responses, but how regulatory programs are altered to allow T cells to differentially respond to distinct cytokine stimuli remains poorly understood. Here, we have globally analyzed enhancer elements bound by IL-2-activated STAT5 and IL-21-activated STAT3 in T cells and identified Il2ra as the top-ranked gene regulated by an IL-2-activated STAT5-bound superenhancer and one of the top genes regulated by STAT3-bound superenhancers. Moreover, we found that STAT5 binding was rapidly superenriched at genes highly induced by IL-2 and that IL-2-activated STAT5 binding induces new and augmented chromatin interactions within superenhancer-containing genes. Based on chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing data, we used CRISPR-Cas9 gene editing to target three of the STAT5 binding sites within the Il2ra superenhancer in mice. Each mutation decreased STAT5 binding and altered IL-2-induced Il2ra gene expression, revealing that individual elements within the superenhancer were not functionally redundant and that all were required for normal gene expression. Thus, we demonstrate cooperative utilization of superenhancer elements to optimize gene expression and show that STAT5 mediates IL-2-induced chromatin looping at superenhancers to preferentially regulate highly inducible genes, thereby providing new insights into the mechanisms underlying cytokine-dependent superenhancer function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Enhancer Elements, Genetic , Interleukin-2/genetics , Receptors, Interleukin-2/immunology , STAT5 Transcription Factor/immunology , Animals , Binding Sites , CD8-Positive T-Lymphocytes/cytology , CRISPR-Cas Systems , Chromatin/chemistry , Chromatin/immunology , Gene Editing , Gene Expression Regulation , Genes, Reporter , Genetic Loci , Humans , Interleukin-2/immunology , Interleukins/genetics , Interleukins/immunology , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Protein Binding , Receptors, Interleukin-2/genetics , STAT5 Transcription Factor/genetics , Signal Transduction , Transcription, Genetic
13.
Genome Res ; 26(12): 1697-1709, 2016 12.
Article in English | MEDLINE | ID: mdl-27789526

ABSTRACT

ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.


Subject(s)
Chromatin/genetics , Chromosomes, Human/genetics , Computational Biology/methods , Imaging, Three-Dimensional/methods , B-Lymphocytes/cytology , Cells, Cultured , Chromosomes , Computer Simulation , Gene Expression Regulation , Humans , Information Storage and Retrieval , Models, Genetic
14.
Nucleic Acids Res ; 44(W1): W288-93, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27185892

ABSTRACT

Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.


Subject(s)
Genome, Human , Imaging, Three-Dimensional/methods , Models, Biological , User-Computer Interface , Cell Line, Transformed , Chromosomes , Computer Graphics , Computer Simulation , Humans , Information Storage and Retrieval , Internet , Lymphocytes/metabolism , Lymphocytes/pathology
15.
Nat Commun ; 15(1): 5048, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871723

ABSTRACT

Despite the advent of genomic sequencing, molecular diagnosis remains unsolved in approximately half of patients with Mendelian disorders, largely due to unclarified functions of noncoding regions and the difficulty in identifying complex structural variations. In this study, we map a unique form of central iris hypoplasia in a large family to 6q15-q23.3 and 18p11.31-q12.1 using a genome-wide linkage scan. Long-read sequencing reveals a balanced translocation t(6;18)(q22.31;p11.22) with intergenic breakpoints. By performing Hi-C on induced pluripotent stem cells from a patient, we identify two chromatin topologically associating domains spanning across the breakpoints. These alterations lead the ectopic chromatin interactions between APCDD1 on chromosome 18 and enhancers on chromosome 6, resulting in upregulation of APCDD1. Notably, APCDD1 is specifically localized in the iris of human eyes. Our findings demonstrate that noncoding structural variations can lead to Mendelian diseases by disrupting the 3D genome structure and resulting in altered gene expression.


Subject(s)
Chromatin , Iris , Pedigree , Translocation, Genetic , Humans , Chromatin/metabolism , Chromatin/genetics , Iris/metabolism , Male , Female , Chromosomes, Human, Pair 6/genetics , Chromosomes, Human, Pair 18/genetics , Induced Pluripotent Stem Cells/metabolism , Adult , Iris Diseases/genetics , Iris Diseases/metabolism , Iris Diseases/pathology , Genetic Linkage
16.
Nat Commun ; 15(1): 600, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238417

ABSTRACT

Computational methods have been proposed to leverage spatially resolved transcriptomic data, pinpointing genes with spatial expression patterns and delineating tissue domains. However, existing approaches fall short in uniformly quantifying spatially variable genes (SVGs). Moreover, from a methodological viewpoint, while SVGs are naturally associated with depicting spatial domains, they are technically dissociated in most methods. Here, we present a framework (PROST) for the quantitative recognition of spatial transcriptomic patterns, consisting of (i) quantitatively characterizing spatial variations in gene expression patterns through the PROST Index; and (ii) unsupervised clustering of spatial domains via a self-attention mechanism. We demonstrate that PROST performs superior SVG identification and domain segmentation with various spatial resolutions, from multicellular to cellular levels. Importantly, PROST Index can be applied to prioritize spatial expression variations, facilitating the exploration of biological insights. Together, our study provides a flexible and robust framework for analyzing diverse spatial transcriptomic data.


Subject(s)
Gene Expression Profiling , Zygote Intrafallopian Transfer , Transcriptome/genetics , Cluster Analysis , Recognition, Psychology
17.
Comput Struct Biotechnol J ; 23: 2173-2189, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38827229

ABSTRACT

The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.

18.
Plant Physiol ; 159(2): 721-38, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22508932

ABSTRACT

The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.


Subject(s)
Cold Temperature , MicroRNAs/metabolism , RNA, Plant/genetics , Stress, Physiological , Triticum/physiology , Adaptation, Physiological , Computational Biology , Flowers/genetics , Flowers/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids/metabolism , Plant Infertility , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/genetics
19.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2813-2819, 2023 Oct.
Article in Zh | MEDLINE | ID: mdl-37897289

ABSTRACT

To investigate the diversity and community structure of gut microbiome of the invasive species, Achatina fulica, along an urbanization gradient, we collected 30 A. fulica samples from five parks in the urban, suburban, and rural areas of Xiamen City. Using full-length 16S rRNA gene sequencing performed by the third generation PacBio sequencing platform, we analyzed the community characteristics of gut microbiome and soil microbiome in different habitats. We found a significant disparity between the composition of gut microbiome of A. fulica and that of the soil microbiome in their habitats. Furthermore, the gut microbiome of A. fulica were more sensitive to urbanization. The microbial α-diversity indices (Sobs, Chao, Shannon indices) in the soil of A. fulica habitats were consistently higher than those within their guts. Despite the similar ß-diversity indices of microbial communities in urban, suburban, and rural soils, we found a significant discrepancy in gut microbiome composition. Urbanization significantly influenced A. fulica gut microbiome composition. Gut microbiome of A. fulica in urban and suburban regions primarily consisted of Enterobacteriaceae, Xanthomonadaceae, and Mycoplasmataceae, while that in rural areas chiefly composed of Streptococcaceae and Paenibacillaceae. The diversity and abundance of potential human pathogenic bacteria within the gut microbiome of A. fulica significantly increased in urban environments, suggesting that urbanization escalated the risk of A. fulica transmitting potential pathogens.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Urbanization , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Snails/genetics , Snails/microbiology , Soil/chemistry
20.
Int J Mol Med ; 51(3)2023 03.
Article in English | MEDLINE | ID: mdl-36799159

ABSTRACT

Maternal engraftment is frequently present in X­linked severe combined immunodeficiency (X­SCID) patients caused by pathogenic mutations in IL2GR. However, the functional status of the engrafted cells remains unclear because of the difficulty in separately evaluating the function of the maternal and autologous cells. The present study reported an X­SCID patient with a de novo c.677C>T (p.R226H) variant in exon 5 of IL2RG, exhibiting recurrent and persistent infections from 3­months­old. After the male patient suffering recurrent pneumonia and acute hematogenous disseminated tuberculosis when 13­months­old, single­cell RNA sequencing was applied to characterize the transcriptome landscape of his bone marrow mononuclear cells (BMMNCs). A novel bioinformatic analysis strategy was designed to discriminate maternal and autologous cells at single­cell resolution. The maternal engrafted cells consisted primarily of T, NKT and NK cells and the patient presented with the coexistence of autologous cells of these cell types. When compared respectively with normal counterparts, both maternal and autologous T and NKT cells increased the transcription of some important cytokines (GZMB, PRF1 and NKG7) against infections, but decreased the expression of a number of key transcription factors (FOS, JUN, TCF7 and LEF1) related to lymphocyte activation, proliferation and differentiation. Notably, the expression of multiple inhibitory factors (LAG3, CTLA4 and HAVCR2) were substantially enhanced in the T and NKT cells of both origins. In conclusion, both maternal and autologous T and NKT cells exhibited exhaustion­like dysfunction in this X­SCID patient suffering recurrent and persistent infections.


Subject(s)
Natural Killer T-Cells , Severe Combined Immunodeficiency , X-Linked Combined Immunodeficiency Diseases , Humans , Infant , Male , Natural Killer T-Cells/pathology , Persistent Infection , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Single-Cell Analysis , X-Linked Combined Immunodeficiency Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL