Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Nano ; 18(3): 2030-2046, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38198284

ABSTRACT

Understanding the spatial orientation of nanoparticles and the corresponding subcellular architecture events favors uncovering fundamental toxic mechanisms and predicting response pathways of organisms toward environmental stressors. Herein, we map the spatial location of label-free citrate-coated Ag nanoparticles (Cit-AgNPs) and the corresponding subcellular reorganization in microalgae by a noninvasive 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). Cryo-SXT near-natively displays the 3D maps of Cit-AgNPs presenting in rarely identified sites, namely, extracellular polymeric substances (EPS) and the cytoplasm. By comparative 3D morphological assay, we observe that Cit-AgNPs disrupt the cellular ultrastructural homeostasis, triggering a severe malformation of cytoplasmic organelles with energy-producing and stress-regulating functions. AgNPs exposure causes evident disruption of the chloroplast membrane, significant attenuation of the pyrenoid matrix and starch sheath, extreme swelling of starch granules and lipid droplets, and shrinkage of the nucleolus. In accompaniment, the number and volume occupancy of starch granules are significantly increased. Meanwhile, the spatial topology of starch granules extends from the chloroplast to the cytoplasm with a dispersed distribution. Linking the dynamics of the internal structure and the alteration of physiological properties, we derive a comprehensive cytotoxic and response pathway of microalgae exposed to AgNPs. This work provides a perspective for assessing the toxicity at subcellular scales to achieve label-free nanoparticle-caused ultrastructure remodeling of phytoplankton.


Subject(s)
Metal Nanoparticles , Microalgae , Metal Nanoparticles/chemistry , Silver/chemistry , Cytoplasm/metabolism , Starch
2.
ACS Nano ; 17(10): 9069-9081, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37156644

ABSTRACT

Analysis of cellular ultrastructure dynamics and metal ions' fate can provide insights into the interaction between living organisms and metal ions. Here, we directly visualize the distribution of biogenic metallic aggregates, ion-induced subcellular reorganization, and the corresponding regulation effect in yeast by the near-native 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). By comparative 3D morphometric assessment, we observe the gold ions disrupting cellular organelle homeostasis, resulting in noticeable distortion and folding of vacuoles, apparent fragmentation of mitochondria, extreme swelling of lipid droplets, and formation of vesicles. The reconstructed 3D architecture of treated yeast demonstrates ∼65% of Au-rich sites in the periplasm, a comprehensive quantitative assessment unobtained by TEM. We also observe some AuNPs in rarely identified subcellular sites, namely, mitochondria and vesicles. Interestingly, the amount of gold deposition is positively correlated with the volume of lipid droplets. Shifting the external starting pH to near-neutral results in the reversion of changes in organelle architectures, boosting the amount of biogenic Au nanoparticles, and increasing cell viability. This study provides a strategy to analyze the metal ions-living organism interaction from subcellular architecture and spatial localization perspectives.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Saccharomyces cerevisiae , Organelles/metabolism , Mitochondria
3.
Nanoscale ; 13(45): 18977-18986, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34705921

ABSTRACT

Biosynthesis has gained growing interest due to its energy efficiency and environmentally benign nature. Recently, biogenic iron sulfide nanoparticles (FeS NPs) have exhibited excellent performance in environmental remediation and energy recovery applications. However, their biosynthesis regulation strategy and application prospects in the biomedical field remain to be explored. Herein, biogenic FeS NPs are controllably synthesized by Shewanella oneidensis MR-1 and applied for cancer therapy. Tuning the synthesis rate and yield of biogenic FeS NPs is realized by altering the initial iron precursor dosage. Notably, increasing the precursor concentration decreases and delays FeS NP biosynthesis. The biogenic FeS NPs (30 nm) are homogeneously anchored on the cell surface of S. oneidensis MR-1. Moreover, the good hydrophilic nature and outstanding Fenton properties of the as-prepared FeS NPs endow them with good cancer therapy performance. The intracellular location of the FeS NPs taken up is visualized with a soft X-ray microscope (SXM). Highly efficient cancer cell killing can be achieved at extremely low concentrations (<12 µg mL-1), lower than those in reported works. Such good performance is attributed to the Fe2+ release, elevated ROS, reduced glutathione (GSH) consumption, and lipid hydroperoxide (LPO) generation. The resulting FeS NPs show excellent in vivo therapeutic performance. This work provides a facile, eco-friendly, and scalable approach to produce nanomedicine, demonstrating the potential of biogenic nanoparticles for use in cancer therapy.


Subject(s)
Environmental Restoration and Remediation , Nanoparticles , Neoplasms , Shewanella , Iron , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL