Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cytotherapy ; 23(2): 165-175, 2021 02.
Article in English | MEDLINE | ID: mdl-33011075

ABSTRACT

BACKGROUND AIM: Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. METHODS: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. RESULTS: As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32-100%) at 12 weeks and early relief of pain. CONCLUSIONS: The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Mesenchymal Stem Cells , Humans , Immunomodulation , Manufacturing Industry , Quality Control , Skin
2.
Cytotherapy ; 21(5): 546-560, 2019 05.
Article in English | MEDLINE | ID: mdl-30878384

ABSTRACT

BACKGROUND AIMS: Human dermal ABCB5-expressing mesenchymal stromal cells (ABCB5+ MSCs) represent a promising candidate for stem cell-based therapy of various currently uncurable diseases in several fields of regenerative medicine. We have developed and validated a method to isolate, from human skin samples, and expand ABCB5+ MSCs that meet the guideline criteria of the International Society for Cellular Therapy. We are able to process these cells into a Good Manufacturing Practice-conforming, MSC-based advanced-therapy medicinal product. METHODS: To support the development of ABCB5+ MSCs for potential therapeutic topical, intramuscular and intravenous administration, we have tested our product in a series of Good Laboratory Practice-compliant nonclinical in-vivo studies addressing all relevant aspects of biosafety, including potential long-term persistence and proliferation, distribution to nontarget tissues, differentiation into undesired cell types, ectopic tissue formation, tumor formation and local tissue reaction. RESULTS: (i) Subcutaneous application of 1 × 107 ABCB5+ MSCs/animal and intravenous application of 2 × 106 ABCB5+ MSCs/animal, respectively, to immunocompromised mice did not result in safety-relevant biodistribution, persistence or proliferation of the cells; (ii) three monthly subcutaneous injections of ABCB5+ MSCs at doses ranging from 1 × 105 to 1 × 107 cells/animal and three biweekly intravenous injections of 2 × 106 ABCB5+ MSCs/animal, respectively, to immunocompromised mice were nontoxic and revealed no tumorigenic potential; and (iii) intramuscular injection of 5 × 106 ABCB5+ MSCs/animal to immunocompromised mice was locally well tolerated. DISCUSSION: The present preclinical in vivo data demonstrate the local and systemic safety and tolerability of a novel advanced-therapy medicinal product based on human skin-derived ABCB5+ MSCs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Skin/cytology , Administration, Intravenous , Animals , Cell Differentiation , Female , Humans , Injections, Intramuscular , Male , Mesenchymal Stem Cell Transplantation/standards , Mice, Inbred NOD , Quality Control , Tissue Distribution
3.
Exp Cell Res ; 369(2): 335-347, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29864400

ABSTRACT

The continuously decreasing willingness for liver donation aggravates treatment of end-stage liver diseases requiring organ transplantation as the only curative strategy. Cell therapy approaches using human hepatocytes or stem cell-derived hepatocyte-like cells may be a therapeutic option out of this dilemma. ABCB5-positive mesenchymal stromal cells from human skin featured promising potential to treat immune-mediated diseases. Since most of chronic liver diseases involve exaggerating immune mechanisms, it was the aim to demonstrate in this study, whether ABCB5+ stem cells may serve as a resource to generate hepatocytic cells for application in liver cell transplantation. Using an established single-step protocol, which had been successfully applied to differentiate mesenchymal stromal cells into the hepatocytic lineage, ABCB5+ skin-derived stem cells did not gain significant characteristics of hepatocytes. Yet, upon culture in hepatocytic differentiation medium, ABCB5+ stem cells secreted immunomodulatory and anti-fibrotic factors as well as proteins, which may prompt hepatic morphogenesis besides others. Hepatic transplantation of ABCB5+ stem cells, which had been prior cultured in hepatocytic differentiation medium, did not cause any obvious deterioration of liver architecture suggesting their safe application. Thus, human ABCB5+ skin-derived stem cells secreted putative hepatotropic factors after culture in hepatocytic differentiation medium.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Skin/cytology , Skin/metabolism , ATP Binding Cassette Transporter, Subfamily B , Animals , Biomarkers/metabolism , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Lineage , Culture Media , Hepatectomy , Hepatocytes/transplantation , Humans , Liver Regeneration , Liver Transplantation , Male , Mice , Mice, Knockout , Models, Animal , Transplants/cytology , Transplants/metabolism
4.
Arch Toxicol ; 93(9): 2645-2660, 2019 09.
Article in English | MEDLINE | ID: mdl-31435712

ABSTRACT

Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-ß family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Liver Cirrhosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Animals , Disease Models, Animal , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Humans , Injections, Intravenous , Liver Cirrhosis/metabolism , Liver Function Tests , Mesenchymal Stem Cells/cytology , Mice, Inbred BALB C , Mice, Knockout , ATP-Binding Cassette Sub-Family B Member 4
5.
Arch Toxicol ; 93(12): 3669-3670, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31664497

ABSTRACT

We wish to submit a corrigendum to the above-mentioned article. Thank you very much for consideration and publication.

6.
FASEB J ; 26(5): 1982-94, 2012 May.
Article in English | MEDLINE | ID: mdl-22286690

ABSTRACT

Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system (RAS), participates in multiple biological processes, including cell growth, apoptosis, and tissue remodeling. Since AngII activates, in different cell types, signal transducing pathways that are critical for mammary gland postlactational regression, we investigated the role of the RAS during this process. We found that exogenous administration of AngII in mammary glands of lactating Balb/c mice induced epithelium apoptosis [2.9±0.5% (control) vs. 9.6±1.1% (AngII); P < 0.001] and activation of the proapoptotic factor STAT3, an effect inhibited by irbesartan, an AT(1) receptor blocker. Subsequently, we studied the expression kinetics of RAS components during involution. We found that angiotensin-converting enzyme (ACE) mRNA expression peaked 6 h after weaning (5.7-fold; P<0.01), while induction of angiotensinogen and AT(1) and AT(2) receptors expression was detected 96 h after weaning (6.2-, 10-, and 6.2-fold increase, respectively; P<0.01). To assess the role of endogenously generated AngII, mice were treated with losartan, an AT(1) receptor blocker, during mammary involution. Mammary glands from losartan-treated mice showed activation of the survival factors AKT and BCL-(XL), significantly lower LIF and TNF-α mRNA expression (P<0.05), reduced apoptosis [12.1±2.1% (control) vs. 4.8±0.7% (losartan); P<0.001] and shedding of epithelial cells, inhibition of MMP-9 activity in a dose-dependent manner (80%; P<0.05; with losartan IC(50) value of 6.9 mg/kg/d] and lower collagen deposition and adipocyte invasion causing a delayed involution compared to vehicle-treated mice. Furthermore, mammary glands of forced weaned AT(1A)- and/or AT(1B)-deficient mice exhibited retarded apoptosis of epithelial cells [6.3±0.95% (WT) vs. 3.3±0.56% (AT(1A)/AT(1B) DKO); P<0.05] with remarkable delayed postlactational regression compared to wild-type animals. Taken together, these results strongly suggest that AngII, via the AT(1) receptor, plays a major role in mouse mammary gland involution identifying a novel role for the RAS. angiotensin system.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Mammary Glands, Animal/drug effects , Receptor, Angiotensin, Type 1/drug effects , Renin-Angiotensin System , Angiotensin II/metabolism , Animals , Apoptosis/drug effects , Cell Line , Dose-Response Relationship, Drug , Female , In Situ Nick-End Labeling , Lactation , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/physiology , Mice , Mice, Inbred BALB C , Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL