Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Dairy Sci ; 100(4): 3031-3042, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28161185

ABSTRACT

In an effort to characterize colostrum microbial diversity and its potential associations with early-lactation clinical mastitis, we used high-throughput sequencing of the 16S rRNA gene to investigate the bovine colostrum microbiome. A prospective observational study was conducted that included 70 Holstein cows; colostrum samples were collected from all 4 mammary gland quarters. Colostrum samples were categorized according to whether the quarter was diagnosed (CMC) or not diagnosed (NCMC) with clinical mastitis during the first 30 d postpartum. Colostrum samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and Tenericutes phyla, with the 6 most common taxa [order (o), family (f), and genus (g)] being g_Staphylococcus, g_Prevotella, f_Ruminococcaceae, o_Bacteroidales, o_Clostridiales, and g_Pseudomonas. The colostrum microbiota of primiparous cows was significantly richer (higher number of bacterial species) than that of multiparous cows, and differences in colostrum taxonomic structure between parities were also observed. The microbial community of NCMC samples of primiparous cows was significantly more diverse than that of CMC samples, and the relative abundances of the Tenericutes and Fusobacteria phyla as well as the Mycoplasma and Fusobacterium genera were significantly higher in NCMC than in CMC samples of primiparous cows. The colostrum core microbiome, defined as the bacterial taxa common to all colostrum samples examined, was composed of 20 taxa and included bacterial genera already known to be associated with mastitis (e.g., Staphylococcus, Mycoplasma, and Streptococcus spp.). Our results indicate that the colostrum microbiome of primiparous cows differs from that of multiparous cows, and it harbors some diversity and taxonomic markers of mammary gland health specific to primiparous cows only.


Subject(s)
Colostrum , RNA, Ribosomal, 16S/genetics , Animals , Cattle , Female , Lactation , Mastitis, Bovine/microbiology , Microbiota , Prospective Studies
2.
PLoS One ; 9(12): e116465, 2014.
Article in English | MEDLINE | ID: mdl-25551453

ABSTRACT

The goal of our study was to isolate and characterize Faecalibacterium prausnitzii from fecal samples of healthy calves and piglets, in order to develop a novel probiotic for livestock animals. We identified 203 isolates of Faecalibacterium sp., which were clustered in 40 genetically distinct groups. One representative isolate from each cluster was selected for further characterization. The concentrations of the short chain fatty acids (SCFA) acetate, butyrate, propionate and isobutyrate in the culture media were measured by gas chromatography. We observed reduction in the concentration of acetate followed by concomitant increase in the concentration of butyrate, suggesting that the isolates were consuming acetate present in the media and producing butyrate. Butyrate production correlated positively with bacterial growth. Since butyrate has many benefits to the colonic epithelial cells, the selection of strains that produce higher amounts of butyrate is extremely important for the development of this potential probiotic. The effect of pH and concentration of bile salts on bacterial growth was also evaluated in order to mimic the conditions encountered by F. prausnitzii in vivo. The optimal pH for growth ranged between 5.5 and 6.7, while most isolates were inhibited by of the lowest concentration of bile salts tested (0.1%). Antimicrobial resistance profile showed that most isolates of Faecalibacterium sp. were resistant against ciprofloxacin and sulfamethoxazole-trimethoprim. More than 50% of the isolates were resistant to tetracycline, amikacin, cefepime and cefoxitin. A total of 19 different combinations of multidrug resistance were observed among the isolates. Our results provide new insights into the cultural and physiological characteristics of Faecalibacterium prausnitzii illustrating large variability in short chain fatty acid production, in vitro growth, sensitivity to bile salts, and antibiotic resistance and suggesting that future probiotic candidates should be carefully studied before elected for in vivo studies.


Subject(s)
Cattle/microbiology , Clostridiales/isolation & purification , Swine/microbiology , Animals , Clostridiales/genetics , Clostridiales/growth & development , Feces/microbiology , Gastrointestinal Microbiome , Genetic Variation , Phylogeny , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL