Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 200(1): 305-315, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29150563

ABSTRACT

Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , Macrophages/immunology , Neoplasms, Experimental/immunology , Transcription Factors/metabolism , Animals , Arginase/metabolism , Carcinoma, Lewis Lung , Cell Differentiation , Homeostasis , Inflammation Mediators/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology , Th2 Cells/immunology , Transcription Factors/genetics , Up-Regulation
2.
J Exp Med ; 215(11): 2901-2918, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30327417

ABSTRACT

MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type-specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.


Subject(s)
Enhancer Elements, Genetic/immunology , Gene Expression Regulation/immunology , Histocompatibility Antigens Class II/immunology , Macrophages/immunology , Nuclear Proteins/immunology , Trans-Activators/immunology , Transcription Factors/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Gene Rearrangement/immunology , Histocompatibility Antigens Class II/genetics , Macrophages/cytology , Mice , Mice, Knockout , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL