Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-18722155

ABSTRACT

A systematic comparative study of the binding of antitumor Morin and its complexes with DNA has been investigated in the Britton-Robison (BR) buffer solutions using voltammetric and spectroscopic methods. The results show that Morin molecule, acting as an intercalator, is inserted into the cavity of the beta-cyclodextrin (beta-CD) as well as into the base stacking domain of the DNA double helix. The interaction of Morin-Cu complex or the inclusion complex of Morin-beta-CD with ds-DNA causes hypochromism in the absorption spectra, along with pronounced changes in the electrochemical behavior of the Morin complexes. An isobestic point and a new spectrum band appeared indicating the formation of the new system of Morin-Cu-DNA at lambda(m)=391 nm and Morin-beta-CD-DNA at lambda(m)=375 nm. The intercalation of Morin-Cu and Morin-beta-CD complexes with DNA produces an electrochemically inactive supramolecular complex. The binding constants were calculated from the increase of the solubility, the strong hypochromism, and the decrease in peak current of Morin and its complexes upon the addition of the host molecules. Calculation of the thermodynamic parameters of the interaction of the inclusion complex of Morin-beta-CD with DNA, including Gibbs free energy change, Helmholz free energy and entropy change shows that the complexation is a spontaneous process of association.


Subject(s)
Copper/pharmacokinetics , DNA/metabolism , Flavonoids/pharmacokinetics , beta-Cyclodextrins/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Copper/chemistry , DNA/drug effects , Electrochemistry/methods , Flavonoids/chemistry , Intercalating Agents/chemistry , Intercalating Agents/pharmacokinetics , Models, Biological , Spectrometry, Fluorescence , beta-Cyclodextrins/chemistry
2.
Talanta ; 41(5): 659-62, 1994 May.
Article in English | MEDLINE | ID: mdl-18965979

ABSTRACT

A very sensitive electrochemical stripping method for trace measurements of 2-thiouracil and 4-thiouridine in presence of Cu(II) is described. The chelate of Cu(II) with 2-thiouracil and 4-thiouridine is adsorbed on the hanging mercury drop electrode, and the reduction current of the accumulated complex is measured by cathodic stripping voltammetry. The adsorption and redox behaviour are indicated by cyclic voltammetry. Optimum experimental conditions include a preconcentration potential of 0.0 V, solution of pH 7.2, adsorption time 5 min, pulse amplitude 100 mV, and a linear scan mode. The sharp chelate peak, associated with the effective interfacial accumulation, coupled with the flat baseline, facilitates measurements at the nanomolar and submicromolar concentration levels.

3.
Anal Sci ; 19(8): 1115-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12945662

ABSTRACT

The surface activity of xanthine (Xan) and xanthosine (Xano) at a hanging mercury drop electrode (HMDE) was studied using out-of-phase ac and cyclic dc voltammetry. The results show that Xan and Xano were strongly adsorbed and chemically interacted with the charged mercury surface, which is the prerequisite step for applying the cathodic adsorptive stripping voltammetric determination of such biologically important compounds. Differential pulse cathodic adsorptive stripping voltammetry (DPCASV) and square-wave cathodic adsorptive stripping voltammetry (SWCASV) were applied for the ultratrace determination of Xan and Xano compounds. Moreover, a rapid and sensitive controlled adsorptive accumulation of Cu(II) complexes of both compounds provided the basis of a direct stripping voltammetric determination of such compounds to submicromolar and nanomolar levels. Operational and solution conditions for the quantitative ultratrace determination of Xan and Xano were optimized in absence and presence of Cu(II). The calibration curve data were subjected to least-squares refinements. The effects of several types of inorganic and organic interfering species on the determination of Xan or Xano were considered.

4.
Anal Bioanal Chem ; 375(8): 1024-30, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12733014

ABSTRACT

The determination of the interaction between lumichrome (LC), one of the products of decomposition of the biologically important flavins, and calf thymus double-stranded DNA was performed by using cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) in connection with a hanging mercury drop electrode (HMDE) or glassy carbon electrode (GCE). The nature of the process taking place at both electrode surfaces was clarified. It was found that the addition of DNA to a buffered LC solution results in the decrease of redox peak currents with changes in the peak potentials at both electrodes. We assume that LC interacting with DNA produces an electrochemically inactive supramolecular complex via intercalation. There was a difference between the electrochemical parameters determined at the HMDE and those at the GCE. The binding constants ( K) of the LC-DNA complex at HMDE and GCE were determined through the changes of peak currents and their values at the 10(5) level and 10(4) level with each nucleotide residue of DNA binding one LC molecule, respectively. Furthermore, the calibration graph for the determination of DNA was obtained by the decrease in the DPSV peak current of LC in the presence of DNA. Different variables, such as the concentration of LC, the accumulation time and solution conditions, were studied and optimised to maximize the sensitivity; in addition, the detection limit and the reproducibility were determined.


Subject(s)
Carbon/chemistry , DNA/metabolism , Electrochemistry/instrumentation , Electrochemistry/methods , Flavins/metabolism , Mercury/chemistry , Animals , Cattle , Electrodes , Glass , Hydrogen-Ion Concentration , Oxidation-Reduction , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL