Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786596

ABSTRACT

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Subject(s)
Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
2.
Genomics ; 115(6): 110709, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37739021

ABSTRACT

Recent studies on marine organisms have made use of third-generation sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). While these specialized bioinformatics tools have different algorithmic designs and performance capabilities, they offer scalability and can be applied to various datasets. We investigated the effectiveness of PacBio and ONT RNA sequencing methods in identifying the venom of the jellyfish species Nemopilema nomurai. We conducted a detailed analysis of the sequencing data from both methods, focusing on key characteristics such as CD, alternative splicing, long-chain noncoding RNA, simple sequence repeat, transcription factor, and functional transcript annotation. Our findings indicate that ONT generally produced higher raw data quality in the transcriptome analysis, while PacBio generated longer read lengths. PacBio was found to be superior in identifying CDs and long-chain noncoding RNA, whereas ONT was more cost-effective for predicting alternative splicing events, simple sequence repeats, and transcription factors. Based on these results, we conclude that PacBio is the most specific and sensitive method for identifying venom components, while ONT is the most cost-effective method for studying venogenesis, cnidocyst (venom gland) development, and transcription of virulence genes in jellyfish. Our study has implications for future sequencing technologies in marine jellyfish, and highlights the power of full-length transcriptome analysis in discovering potential therapeutic targets for jellyfish dermatitis.


Subject(s)
Cnidarian Venoms , Scyphozoa , Animals , RNA , Sequence Analysis, RNA , RNA, Untranslated , High-Throughput Nucleotide Sequencing/methods
3.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36978990

ABSTRACT

Jellyfish is a valuable biological resource in marine ecosystems, and blooms been observed in numerous coastal regions. However, their utility is limited by their high water content. Recent research has focused on extracting antioxidants from marine sources. In this study, we obtained jellyfish peptides (JPHT-2) through enzymatic hydrolysis of lyophilized jellyfish powder under optimal conditions and measured their antioxidant activity. Our findings indicate that JPHT-2 possesses significant radical-scavenging activity and reducing power. At a concentration of 0.74 mg/mL, JPHT-2 exhibited a remarkable ability to scavenge hydroxyl radicals, with a rate of up to 50%. The EC50 values for scavenging superoxide anion and DPPH radical were 1.55 mg/mL and 1.99 mg/mL, respectively. At the cellular level, JPHT-2 was able to protect HaCaT cells from H2O2-induced oxidative damage by increasing the level of superoxide dismutase (SOD) in cells. In conclusion, jellyfish peptides with low molecular weight can be easily obtained through hydrolysis with three enzymes and exhibit excellent antioxidant activity and safety. Jellyfish can serve as a promising source of antioxidants.

SELECTION OF CITATIONS
SEARCH DETAIL