Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
Add more filters

Publication year range
1.
Genes Dev ; 32(3-4): 309-320, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29491137

ABSTRACT

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Subject(s)
Epoxy Compounds/chemistry , Macrolides/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , RNA Splicing/drug effects , Spliceosomes/drug effects , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Cryoelectron Microscopy , Models, Molecular , Mutation , Phosphoproteins/isolation & purification , RNA Precursors/metabolism , RNA Splicing Factors/isolation & purification , RNA, Messenger/metabolism , RNA-Binding Proteins , Trans-Activators
2.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35593401

ABSTRACT

Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion.


Subject(s)
Cleft Palate , Palate , Actomyosin/metabolism , Animals , Apoptosis , Epithelial Cells/metabolism , Epithelium/metabolism , Mammals , Palate/metabolism
3.
EMBO Rep ; 24(3): e55536, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36705069

ABSTRACT

The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells. In the presence of a TCR-engaging signal, both cGAS and STING activation switches T cells into type I interferon-producing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGAS-STING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGAS-STING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGAS-STING-targeted immunotherapies.


Subject(s)
Interferon Type I , Nucleotidyltransferases , Humans , Nucleotidyltransferases/metabolism , Signal Transduction , Antiviral Agents , T-Lymphocytes , Immunity, Innate
4.
Mol Psychiatry ; 28(1): 423-433, 2023 01.
Article in English | MEDLINE | ID: mdl-35668159

ABSTRACT

The long-term physical and mental sequelae of COVID-19 are a growing public health concern, yet there is considerable uncertainty about their prevalence, persistence and predictors. We conducted a comprehensive, up-to-date meta-analysis of survivors' health consequences and sequelae for COVID-19. PubMed, Embase and the Cochrane Library were searched through Sep 30th, 2021. Observational studies that reported the prevalence of sequelae of COVID-19 were included. Two reviewers independently undertook the data extraction and quality assessment. Of the 36,625 records identified, a total of 151 studies were included involving 1,285,407 participants from thirty-two countries. At least one sequelae symptom occurred in 50.1% (95% CI 45.4-54.8) of COVID-19 survivors for up to 12 months after infection. The most common investigation findings included abnormalities on lung CT (56.9%, 95% CI 46.2-67.3) and abnormal pulmonary function tests (45.6%, 95% CI 36.3-55.0), followed by generalized symptoms, such as fatigue (28.7%, 95% CI 21.0-37.0), psychiatric symptoms (19.7%, 95% CI 16.1-23.6) mainly depression (18.3%, 95% CI 13.3-23.8) and PTSD (17.9%, 95% CI 11.6-25.3), and neurological symptoms (18.7%, 95% CI 16.2-21.4), such as cognitive deficits (19.7%, 95% CI 8.8-33.4) and memory impairment (17.5%, 95% CI 8.1-29.6). Subgroup analysis showed that participants with a higher risk of long-term sequelae were older, mostly male, living in a high-income country, with more severe status at acute infection. Individuals with severe infection suffered more from PTSD, sleep disturbance, cognitive deficits, concentration impairment, and gustatory dysfunction. Survivors with mild infection had high burden of anxiety and memory impairment after recovery. Our findings suggest that after recovery from acute COVID-19, half of survivors still have a high burden of either physical or mental sequelae up to at least 12 months. It is important to provide urgent and appropriate prevention and intervention management to preclude persistent or emerging long-term sequelae and to promote the physical and psychiatric wellbeing of COVID-19 survivors.


Subject(s)
COVID-19 , Female , Humans , Male , Anxiety , COVID-19/complications , COVID-19/epidemiology , COVID-19/psychology , Pandemics , Post-Acute COVID-19 Syndrome/pathology , Lung/pathology , Risk Factors
5.
Inorg Chem ; 63(14): 6276-6284, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38546717

ABSTRACT

Molecules with high point-group symmetry are interesting prototype species in the textbook. As transition metal-centered boron clusters tend to have highly symmetric structures to fulfill multicenter bonding and high stability, new boron clusters with rare point-group symmetry may be viable. Through in-depth scrutiny over the structures of experimentally already observed transition metal-centered boron-wheel complexes, geometric and electronic design principles are summarized, based on which we studied M©B11k- (M = Y, La; Zr, Hf; k = 1, 2) clusters and found that a Y©B112- boron-wheel complex has an unprecedented D11h point-group symmetry. The remarkable stability of the planar Y©B112- complex is illustrated via extensive global-minimum structural search as well as comprehensive chemical bonding analyses. Similar to other boron-wheel complexes, the Y©B112- complex is shown to possess σ and π double aromaticity, indeed following the electronic design principle previously summarized. This new compound is expected to be experimentally identified, which will extend the currently known largest possible planar molecular symmetry and enrich the metal-centered boron-wheel class.

6.
Phys Chem Chem Phys ; 26(6): 5356-5367, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38269413

ABSTRACT

Boron has been found to be able to form multiple bonds with lead. To probe Pb-B bonding, here we report an investigation of three Pb-doped boron clusters, PbB2-, PbB3O-, and PbB4O2-, which are produced by a laser ablation cluster source and characterized by photoelectron spectroscopy and ab initio calculations. The most stable structures of PbB2-, PbB3O-, and PbB4O2- are found to follow the formula, [PbB2(BO)n]- (n = 0-2), with zero, one, and two boronyl ligands coordinated to a triangular and aromatic PbB2 core, respectively. The PbB2- cluster contains a BB double bond and two Pb-B single bonds. The coordination of BO is observed to weaken Pb-B bonding but strengthen the BB bond in [PbB2(BO)n]- (n = 1, 2). The anionic [PbB2(BO)2]- and its corresponding neutral closed-shell [PbB2(BO)2] contain a BB triple bond. A low-lying Y-shaped isomer is also observed for PbB4O2-, consisting of a central sp2 hybridized B atom bonded to two boronyl ligands and a PbB unit.

7.
J Cell Physiol ; 238(1): 257-273, 2023 01.
Article in English | MEDLINE | ID: mdl-36436135

ABSTRACT

Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.


Subject(s)
Chemokines , Cytokines , Pruritus , Psoriasis , Toll-Like Receptor 2 , Toll-Like Receptor 7 , Animals , Mice , Cytokines/metabolism , Imiquimod/adverse effects , Interleukin-1 Receptor-Like 1 Protein , Interleukin-17 , Interleukin-33 , Interleukin-6 , Keratinocytes/metabolism , Psoriasis/drug therapy , RNA, Messenger , Toll-Like Receptor 2/genetics , Toll-Like Receptor 7/genetics , Tumor Necrosis Factor-alpha/adverse effects , Disease Models, Animal , Mice, Knockout , HaCaT Cells , Humans
8.
BMC Plant Biol ; 23(1): 37, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36642721

ABSTRACT

BACKGROUND: Gossypol is a unique secondary metabolite and sesquiterpene in cotton, which is mainly synthesized in the root system of cotton and exhibits many biological activities. Previous research found that grafting affected the density of pigment glands and the gossypol content in cotton. RESULTS: This study performed a transcriptome analysis on cotton rootstocks and scions of four grafting methods. The gene expression of mutual grafting and self-grafting was compared to explore the potential genes involved in gossypol biosynthesis. A total of six differentially expressed enzymes were found in the main pathway of gossypol synthesis-sesquiterpene and triterpene biosynthesis (map00909): lupeol synthase (LUP1, EC:5.4.99.41), beta-amyrin synthase (LUP2, EC:5.4.99.39), squalene monooxygenase (SQLE, EC:1.14.14.17), squalene synthase (FDFT1, EC:2.5.1.21), (-)-germacrene D synthase (GERD, EC:4.2.3.75), ( +)-delta-cadinene synthase (CADS, EC:4.2.3.13). By comparing the results of the gossypol content and the density of the pigment gland, we speculated that these six enzymes might affect the biosynthesis of gossypol. It was verified by qRT-PCR analysis that grafting could influence gene expression of scion and stock. After suppressing the expression of the LUP1, FDFT1, and CAD genes by VIGS technology, the gossypol content in plants was significantly down-regulated. CONCLUSIONS: These results indicate the potential molecular mechanism of gossypol synthesis during the grafting process and provide a theoretical foundation for further research on gossypol biosynthesis.


Subject(s)
Gossypol , Sesquiterpenes , Gossypol/metabolism , Sesquiterpenes/metabolism , Gene Expression Profiling , Gossypium/genetics , Gossypium/metabolism
9.
Clin Endocrinol (Oxf) ; 99(3): 233-245, 2023 09.
Article in English | MEDLINE | ID: mdl-37272391

ABSTRACT

OBJECTIVE: Primary hyperparathyroidism is a common endocrine disorder, with 80% of all cases usually caused by one single hyperfunctioning parathyroid adenoma. Conventional imaging modalities for the diagnostic work-up of primary hyperparathyroidism (PHPT) include ultrasound of the neck, 99mTc-sestamibi scintigraphy, and four-dimensional computed tomography (4D-CT). However, the role of other imaging modalities, such as 11C-methionine PET/CT, in the care pathway for PHPT is currently unclear. Here, we report our experience of the diagnostic utility of 11C-methionine PET/CT in a single-center patient cohort (n = 45). DESIGN: Retrospective single-center cohort study. PATIENTS AND MEASUREMENTS: The data of eligible patients that underwent 11C-methionine PET/CT between 2014 and 2022 at Addenbrooke's Hospital (Cambridge, UK) were collected and analyzed. The clinical utility of imaging modalities was determined by comparing the imaging result with histopathological and biochemical outcomes following surgery. RESULTS: In patients with persistent primary hyperparathyroidism following previous surgery, 11C-methionine PET/CT identified a candidate lesion in 6 of 10 patients (60.0%), and histologically confirmed in 5 (50.0%). 11C-methionine PET/CT also correctly identified a parathyroid adenoma in 9 out of 12 patients (75.0%) that failed to be localized on other imaging modalities. 11C-methionine PET/CT had a sensitivity of 70.0% (95% CI 55.8 - 84.2%) for the detection of parathyroid adenomas. CONCLUSIONS: This study highlights a diagnostic role for 11C-methionine PET/CT in patients that have undergone unsuccessful prior surgery or have equivocal or negative prior imaging results, aiding localization and a targeted surgical approach.


Subject(s)
Adenoma , Hyperparathyroidism, Primary , Parathyroid Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Hyperparathyroidism, Primary/diagnostic imaging , Hyperparathyroidism, Primary/etiology , Parathyroid Neoplasms/diagnostic imaging , Parathyroid Neoplasms/complications , Retrospective Studies , Cohort Studies , Adenoma/diagnosis , Adenoma/diagnostic imaging , Methionine , Technetium Tc 99m Sestamibi , Racemethionine , United Kingdom , Parathyroid Glands
10.
Annu Rev Phys Chem ; 73: 233-253, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35044792

ABSTRACT

Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (Bn-), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB- and RhB2O- clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triplebond was found in ReB2O- and IrB2O-. The ReB4- cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB6- cluster was found to exhibit aromaticity analogous to metallabenzenes.

11.
Mol Psychiatry ; 27(2): 1059-1067, 2022 02.
Article in English | MEDLINE | ID: mdl-34719692

ABSTRACT

Most previous studies in the pathophysiology of major depressive disorder (MDD) focused on fecal samples, which limit the identification of the gut mucosal and luminal microbiome in depression. Here, we address this knowledge gap. Male cynomolgus macaques (Macaca fascicularis) were randomly assigned to a chronic unpredictable mild stress (CUMS) group, or to an unstressed control group. Behavioral tests were completed in both groups. At endpoint, microbe composition of paired mucosal and luminal samples from cecum, ascending, transverse, and descending colons were determined by 16S ribosomal RNA gene sequencing. The levels of 34 metabolites involved in carbohydrate or energy metabolism in luminal samples were measured by targeted metabolomics profiling. CUMS macaques demonstrated significantly more depressive-like behaviors than controls. We found differences in mucosal and luminal microbial composition between the two groups, which were characterized by Firmicutes and Bacteriodetes at the phylum level, as well as Prevotellaceae and Lachnospiraceae at the family level. The majority of discriminative microbes correlated with the depressive-like behavioral phenotype. In addition, we found 27 significantly different microbiome community functions between the two groups in mucosa, and one in lumen, which were mainly involved in carbohydrate and energy metabolism. A total of nine metabolites involved in these pathways were depleted in CUMS animals. Together, CUMS macaques with depressive-like behaviors associated with distinct alterations of covarying microbiota, carbohydrate and energy metabolism in mucosa and lumen. Further studies should focus on the mucosal and luminal microbiome to provide a deeper spatiotemporal perspective of microbial alterations in the pathogenesis of MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Microbiota , Animals , Carbohydrates , Macaca fascicularis , Male
12.
Mol Psychiatry ; 27(1): 19-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34580416

ABSTRACT

Infectious diseases, including COVID-19, are crucial public health issues and may lead to considerable fear among the general public and stigmatization of, and discrimination against, specific populations. This meta-analysis aimed to estimate the pooled prevalence of stigma in infectious disease epidemics. We systematically searched PubMed, PsycINFO, Embase, MEDLINE, Web of Science, and Cochrane databases since inception to June 08, 2021, and reported the prevalence of stigma towards people with infectious diseases including SARS, H1N1, MERS, Zika, Ebola, and COVID-19. A total of 50 eligible articles were included that contributed 51 estimates of prevalence in 92722 participants. The overall pooled prevalence of stigma across all populations was 34% [95% CI: 28-40%], including enacted stigma (36% [95% CI: 28-44%]) and perceived stigma (31% [95% CI: 22-40%]). The prevalence of stigma in patients, community population, and health care workers, was 38% [95% CI: 12- 65%], 36% [95% CI: 28-45%], and 30% [95% CI: 20-40%], respectively. The prevalence of stigma in participants from low- and middle-income countries was 37% [95% CI: 29-45%], which is higher than that from high-income countries (27% [95% CI: 18-36%]) though this difference was not statistically significant. A similar trend of prevalence of stigma was also observed in individuals with lower education (47% [95% CI: 23-71%]) compared to higher education level (33% [95% CI: 23-4%]). These findings indicate that stigma is a significant public health concern, and effective and comprehensive interventions are needed to counteract the damaging effects of the infodemics during infectious disease epidemics, including COVID-19, and reduce infectious disease-related stigma.


Subject(s)
COVID-19 , Communicable Diseases , Influenza A Virus, H1N1 Subtype , Zika Virus Infection , Zika Virus , Humans , Prevalence
13.
Mol Psychiatry ; 27(8): 3214-3222, 2022 08.
Article in English | MEDLINE | ID: mdl-35668158

ABSTRACT

Infectious disease epidemics have become more frequent and more complex during the 21st century, posing a health threat to the general public and leading to psychological symptoms. The current study was designed to investigate the prevalence of and risk factors associated with depression, anxiety and insomnia symptoms during epidemic outbreaks, including COVID-19. We systematically searched the PubMed, Embase, Web of Science, OVID, Medline, Cochrane databases, bioRxiv and medRxiv to identify studies that reported the prevalence of depression, anxiety or insomnia during infectious disease epidemics, up to August 14th, 2020. Prevalence of mental symptoms among different populations including the general public, health workers, university students, older adults, infected patients, survivors of infection, and pregnant women across all types of epidemics was pooled. In addition, prevalence of mental symptoms during COVID-19 was estimated by time using meta-regression analysis. A total of 17,506 papers were initially retrieved, and a final of 283 studies met the inclusion criteria, representing a total of 948,882 individuals. The pooled prevalence of depression ranged from 23.1%, 95% confidential intervals (95% CI: [13.9-32.2]) in survivors to 43.3% (95% CI: [27.1-59.6]) in university students, the pooled prevalence of anxiety ranged from 25.0% (95% CI: [12.0-38.0]) in older adults to 43.3% (95% CI: [23.3-63.3]) in pregnant women, and insomnia symptoms ranged from 29.7% (95% CI: [24.4-34.9]) in the general public to 58.4% (95% CI: [28.1-88.6]) in university students. Prevalence of moderate-to-severe mental symptoms was lower but had substantial variation across different populations. The prevalence of mental problems increased over time during the COVID-19 pandemic among the general public, health workers and university students, and decreased among infected patients. Factors associated with increased prevalence for all three mental health symptoms included female sex, and having physical disorders, psychiatric disorders, COVID infection, colleagues or family members infected, experience of frontline work, close contact with infected patients, high exposure risk, quarantine experience and high concern about epidemics. Frequent exercise and good social support were associated with lower risk for these three mental symptoms. In conclusion, mental symptoms are common during epidemics with substantial variation across populations. The population-specific psychological crisis management are needed to decrease the burden of psychological problem and improve the mental wellbeing during epidemic.


Subject(s)
COVID-19 , Communicable Diseases , Sleep Initiation and Maintenance Disorders , Pregnancy , Female , Humans , Aged , COVID-19/epidemiology , Pandemics , Sleep Initiation and Maintenance Disorders/epidemiology , Prevalence , Depression/epidemiology , Depression/etiology , SARS-CoV-2 , Anxiety/epidemiology , Anxiety/etiology , Risk Factors , Communicable Diseases/epidemiology
14.
Age Ageing ; 52(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37381843

ABSTRACT

BACKGROUND: Pharmacological treatments are very common to be used for alleviating neuropsychiatric symptoms (NPS) in dementia. However, decision on drug selection is still a matter of controversy. AIMS: To summarise the comparative efficacy and acceptability of currently available monotherapy drug regimens for reducing NPS in dementia. METHOD: We searched PubMed, MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials between inception and 26 December 2022 without language restrictions; and reference lists scanned from selected studies and systematic reviews. Double-blind randomised controlled trials were identified from electronic databases for reporting NPS outcomes in people with dementia. Primary outcomes were efficacy and acceptability. Confidence in the evidence was assessed using Confidence in Network Meta-Analysis (CINeMA). RESULTS: We included 59 trials (15,781 participants; mean age, 76.6 years) and 15 different drugs in quantitative syntheses. Risperidone (standardised mean difference [SMD] -0.20, 95% credible interval [CrI] -0.40 to -0.10) and galantamine (-0.20, -0.39 to -0.02) were more effective than placebo in short-term treatment (median duration: 12 weeks). Galantamine (odds ratio [OR] 1.95, 95% CrI 1.38-2.94) and rivastigmine (1.87, 1.24-2.99) were associated with more dropouts than placebo, and some active drugs. Most of the results were rated as low or very low according to CINeMA. CONCLUSIONS: Despite the scarcity of high-quality evidence, risperidone is probably the best pharmacological option to consider for alleviating NPS in people with dementia in short-term treatment when considering the risk-benefit profile of drugs.


Subject(s)
Dementia , Galantamine , Humans , Aged , Network Meta-Analysis , Risperidone , Databases, Factual , Dementia/diagnosis , Dementia/drug therapy , Randomized Controlled Trials as Topic
15.
BMC Psychiatry ; 23(1): 789, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891522

ABSTRACT

BACKGROUND: Adolescent major depressive disorder (MDD) is a prevalent mental health problem with low treatment success rates. Whether fluoxetine or fluoxetine combined with cognitive-behavioural therapy (CBT) is the more effective initial treatment for adolescent MDD remains controversial, and few studies have investigated whether treatment switching or augmentation is preferred when the initial treatment is not working well. METHODS: We developed a multicentre open-label Sequential Multiple Assignment Randomized Trial (SMART) design, consisting of two phases lasting 8 weeks each. In phase 1 (at baseline), patients will be recruited and grouped in fluoxetine group or fluoxetine combined with CBT group by patient self-selection. In phase 2 (after 8 weeks of treatment), the nonresponders will be randomly assigned to six groups, in which participants will switch to sertraline, vortioxetine, or duloxetine or added aripiprazole, olanzapine, or lithium carbonate to fluoxetine. After the full 16 weeks of treatment, we will assess the long-term sustainability of the treatment effects by evaluating participants during their subsequent naturalistic treatment. The primary outcome will be the response rate, determined by the Children's Depression Rating Scale-Revised (CDRS-R). Secondary outcomes include the change in scores on the Beck Depression Inventory (BDI), the Screen for Child Anxiety-Related Emotional Disorders (SCARED) and the Safe Assessment. DISCUSSION: The results from this study will aid clinicians in making informed treatment selection decisions for adolescents with MDD. TRIAL REGISTRATION: This protocol was registered at ClinicalTrials.gov with Identifier: NCT05814640.


Subject(s)
Cognitive Behavioral Therapy , Depressive Disorder, Major , Child , Humans , Adolescent , Fluoxetine/therapeutic use , Depressive Disorder, Major/drug therapy , Depression/therapy , Combined Modality Therapy , Cognitive Behavioral Therapy/methods , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
16.
PLoS Genet ; 16(2): e1008300, 2020 02.
Article in English | MEDLINE | ID: mdl-32092051

ABSTRACT

Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.


Subject(s)
Cell Movement/genetics , Craniofacial Abnormalities/genetics , Ephrin-B1/genetics , Neural Crest/embryology , Skull/abnormalities , Animals , Craniofacial Abnormalities/diagnosis , Disease Models, Animal , Embryo, Mammalian , Embryonic Development/genetics , Ephrin-B1/metabolism , Female , Heterozygote , Humans , Male , Mice , Mice, Knockout , Mosaicism , Mutation , Neural Crest/cytology , Phenotype , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Severity of Illness Index , Sex Factors , Skull/embryology , X Chromosome/genetics
17.
Dev Dyn ; 251(7): 1138-1155, 2022 07.
Article in English | MEDLINE | ID: mdl-35025117

ABSTRACT

BACKGROUND: Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS: We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS: This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.


Subject(s)
Ephrin-B1 , Maxillofacial Development , Receptor, EphB1 , Receptor, EphB3 , Receptors, Eph Family , Animals , Ephrin-B1/genetics , Ephrin-B1/metabolism , Face , Mice , Mutation , Receptor, EphB1/genetics , Receptor, EphB2/genetics , Receptor, EphB3/genetics , Receptors, Eph Family/metabolism
18.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 564-573, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35668615

ABSTRACT

The purpose of this study was to investigate the effects of faecal microbiota transfer (FMT) with lactation Min sows as faecal donor on blood immunity, small intestine amino acid transport capacity, bile acid circulation, and colon microbiota of recipient piglets. From Days 1 to 10, the recipient group (R group) was orally inoculated with a faecal suspension. The control group (Con group) was orally inoculated with sterile physiological saline. On Day 21, the results showed that the immunoglobulin A (IgA) concentration in plasma of the R group was increased (p < 0.05). The expression of 4F2hc in the jejunal mucosa and ileum mucosa of the R group was ameliorated (p < 0.05). The relative abundance of Synergistetes in the colon of the R group was increased, Proteobacteria was diminished by FMT (p < 0.05). On Day 40, the concentrations of IgA, IgG, and interleukin-2 detected in the plasma of the R group were increased (p < 0.05). FXR and fibroblast growth factor 19 gene expression was upregulated in ileum mucosa, CYP7A1 and Na+ taurocholate cotransporter polypeptide gene expression were downregulated in the liver and organic solute transporters α/ß was downregulated in colonic mucosa (p < 0.05). The relative abundance of Proteobacteria and Spirochaetes in the colon of the R group was decreased (p < 0.05). In conclusion, an early FMT with lactation Min sows as faecal donors can alter the small intestine amino acid transport capacity, bile acid circulation, and colonic microbiota of recipient piglets during lactation and after weaning.


Subject(s)
Bile Acids and Salts , Fecal Microbiota Transplantation , Swine , Animals , Female , Fecal Microbiota Transplantation/veterinary , Intestine, Small , Amino Acids , Immunoglobulin A
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 257-262, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-36949682

ABSTRACT

The intestinal barrier, a complex structure consisting of multiple layers of defense barriers, blocks the transfer of intestinal and foreign bacteria and their metabolites into the internal environment of the human body. Intestinal permeability can be used to evaluate the integrity of the intestinal barrier. Increased intestinal permeability has been observed in patients with depressive disorder. Some studies have reported an interaction between depressive disorder and intestinal barrier. Herein, we reviewed reported findings on the mechanisms of how systematic low-grade inflammation, vagal nerve dysfunction, and hypothalamic-pituitary-adrenal axis dysfunction cause changes in intestinal permeability in patients with depressive disorder and the pathogenic mechanism of how bacterial translocation caused by damaged intestinal barrier leads to depressive disorder. In addition, the potential mechanisms of how antidepressants improve intestinal permeability and how probiotics improve depressive disorder have been discussed.


Subject(s)
Depressive Disorder , Hypothalamo-Hypophyseal System , Humans , Pituitary-Adrenal System , Intestines/microbiology , Permeability , Depressive Disorder/metabolism , Depressive Disorder/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology
20.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3156-3161, 2023 Jun.
Article in Zh | MEDLINE | ID: mdl-37381998

ABSTRACT

Baby Boom(BBM) gene is a key regulatory factor in embryonic development and regeneration, cell proliferation, callus growth, and differentiation promotion. Since the genetic transformation system of Panax quinquefolius is unstable with low efficiency and long period, this study attempted to transfer BBM gene of Zea mays to P. quinquefolius callus by gene gunship to investigate its effect on the callus growth and ginsenoside content, laying a foundation for establishing efficient genetic transformation system of P. quinquefolius. Four transgenic callus of P. quinquefolius with different transformation events were obtained by screening for glufosinate ammonium resistance and molecular identification by PCR. The growth state and growth rate of wild-type and transgenic callus were compared in the same growth period. The content of ginsenoside in transgenic callus was determined by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The results showed that transgenic callus growth rate was significantly higher than that of wild-type callus. In addition, the content of ginsenoside Rb_1, Rg_1, Ro, and Re was significantly higher than that in wild-type callus. The paper preliminarily proved the function of BBM gene in promoting growth rate and increasing ginsenoside content, which provided a scientific basis to establish a stable and efficient genetic transformation system for Panax plants in the future.


Subject(s)
Ginsenosides , Panax , Female , Pregnancy , Humans , Panax/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL