Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Planta Med ; 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39471979

ABSTRACT

Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.

2.
Mar Drugs ; 22(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276643

ABSTRACT

A new prenylated indole diketopiperazine alkaloid, rubrumline P (1), was isolated along with six more analogues and characterized from the fermentation culture of a marine sediment-derived fungus, Aspergillus chevalieri, collected at a depth of 15 m near the lighthouse in Dahab, Red Sea, Egypt. In the current study, a bioassay-guided fractionation allowed for the identification of an active fraction displaying significant cytotoxic activity against the human pancreatic adenocarcinoma cell line PANC-1 from the EtOAc extract of the investigated fungus compared to the standard paclitaxel. The structures of the isolated compounds from the active fraction were established using 1D/2D NMR spectroscopy and mass spectrometry, together with comparisons with the literature. The absolute configuration of the obtained indole diketopiperazines was established based on single-crystal X-ray diffraction analyses of rubrumline I (2) and comparisons of optical rotations and NMR data, as well as on biogenetic considerations. Genome sequencing indicated the formation of prenyltransferases, which was subsequently confirmed by the isolation of mono-, di-, tri-, and tetraprenylated compounds. Compounds rubrumline P (1) and neoechinulin D (4) confirmed preferential cytotoxic activity against PANC-1 cancer cells with IC50 values of 25.8 and 23.4 µM, respectively. Although the underlying mechanism-of-action remains elusive in this study, cell cycle analysis indicated a slight increase in the sub-G1 peak after treatment with compounds 1 and 4.


Subject(s)
Adenocarcinoma , Alkaloids , Antineoplastic Agents , Aspergillus , Pancreatic Neoplasms , Humans , Diketopiperazines/chemistry , Pancreatic Neoplasms/drug therapy , Fungi/chemistry , Indole Alkaloids/chemistry , Alkaloids/chemistry , Antineoplastic Agents/pharmacology , Geologic Sediments , Molecular Structure
3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674966

ABSTRACT

We have implemented an improved, cost-effective, and highly reproducible protocol for a simple and rapid differentiation of the human leukemia monocytic cell line THP-1 into surrogates for immature dendritic cells (iDCs) or mature dendritic cells (mDCs). The successful differentiation of THP-1 cells into iDCs was determined by high numbers of cells expressing the DC activation markers CD54 (88%) and CD86 (61%), and the absence of the maturation marker CD83. The THP-1-derived mDCs are characterized by high numbers of cells expressing CD54 (99%), CD86 (73%), and the phagocytosis marker CD11b (49%) and, in contrast to THP-1-derived iDCs, CD83 (35%) and the migration marker CXCR4 (70%). Treatment of iDCs with sensitizers, such as NiSO4 and DNCB, led to high expression of CD54 (97%/98%; GMFI, 3.0/3.2-fold induction) and CD86 (64%/96%; GMFI, 4.3/3.2-fold induction) compared to undifferentiated sensitizer-treated THP-1 (CD54, 98%/98%; CD86, 55%/96%). Thus, our iDCs are highly suitable for toxicological studies identifying potential sensitizing or inflammatory compounds. Furthermore, the expression of CD11b, CD83, and CXCR4 on our iDC and mDC surrogates could allow studies investigating the molecular mechanisms of dendritic cell maturation, phagocytosis, migration, and their use as therapeutic targets in various disorders, such as sensitization, inflammation, and cancer.


Subject(s)
Dendritic Cells , Humans , Cell Line , Dendritic Cells/metabolism , Cell Differentiation
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142230

ABSTRACT

Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure-activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.


Subject(s)
Alkaloids , Triple Negative Breast Neoplasms , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation , Collagen Type I , Humans , Indole Alkaloids , Indolizines , Inflammation , Mice , NF-KappaB Inhibitor alpha , NF-kappa B/pharmacology , Paclitaxel/pharmacology , Phenanthrenes , Phenanthrolines , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment , Tylophora
5.
Chemistry ; 27(45): 11574-11579, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34096655

ABSTRACT

Due to their pronounced bioactivity and limited availability from natural resources, metabolites of the soft coral Pseudopterogorgia elisabethae, such as erogorgiaene and the pseudopterosines, represent important target molecules for chemical synthesis. We have now developed a particularly short and efficient route towards these marine diterpenes exploiting an operationally convenient enantioselective cobalt-catalyzed hydrovinylation as the chirogenic step. Other noteworthy C-C bond forming transformations include diastereoselective Lewis acid-mediated cyclizations, a Suzuki coupling and a carbonyl ene reaction. Starting from 4-methyl-styrene the anti-tubercular agent (+)-erogorgiaene (>98 % ee) was prepared in only 7 steps with 46 % overall yield. In addition, the synthesis of the pseudopterosin A aglycone was achieved in 12 steps with 30 % overall yield and, surprisingly, was found to exhibit a similar anti-inflammatory activity (inhibition of LPS-induced NF-κB activation) as a natural mixture of pseudopterosins A-D or iso-pseudopterosin A, prepared by ß-D-xylosylation of the synthetic aglycone.


Subject(s)
Cobalt , Diterpenes , Catalysis , Glycosides , Stereoisomerism
6.
Bioorg Med Chem ; 29: 115883, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33248353

ABSTRACT

Fermentation of the marine-derived fungus Aspergillus falconensis, isolated from sediment collected from the Red Sea, Egypt on solid rice medium containing 3.5% NaCl yielded a new dibenzoxepin derivative (1) and a new natural isocoumarin (2) along with six known compounds (3-8). Changes in the metabolic profile of the fungus were induced by replacing NaCl with 3.5% (NH4)2SO4 that resulted in the accumulation of three further known compounds (9-11), which were not detected when the fungus was cultivated in the presence of NaCl. The structures of the new compounds were elucidated by HRESIMS and 1D/2D NMR as well as by comparison with the literature. Molecular docking was conducted for all isolated compounds on crucial enzymes involved in the formation, progression and metastasis of cancer which included human cyclin-dependent kinase 2 (CDK-2), human DNA topoisomerase II (TOP-2) and matrix metalloproteinase 13 (MMP-13). Diorcinol (7), sulochrin (9) and monochlorosulochrin (10) displayed notable stability within the active pocket of CDK-2 with free binding energy (ΔG) equals to -25.72, -25.03 and -25.37 Kcal/mol, respectively whereas sulochrin (9) exerted the highest fitting score within MMP-13 active center (ΔG = -33.83 Kcal/mol). In vitro cytotoxic assessment using MTT assay showed that sulochrin (9) exhibited cytotoxic activity versus L5178Y mouse lymphoma cells with an IC50 value of 5.1 µM and inhibition of migration of MDA-MB 231 breast cancer cells at a concentration of 70 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Aspergillus/chemistry , Polyketides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Docking Simulation , Molecular Structure , Optical Imaging , Polyketides/chemistry , Polyketides/isolation & purification , Structure-Activity Relationship
7.
Mar Drugs ; 18(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290208

ABSTRACT

The marine-derived fungus Aspergillus falconensis, isolated from sediment collected from the Canyon at Dahab, Red Sea, yielded two new chlorinated azaphilones, falconensins O and P (1 and 2) in addition to four known azaphilone derivatives (3-6) following fermentation of the fungus on solid rice medium containing 3.5% NaCl. Replacing NaCl with 3.5% NaBr induced accumulation of three additional new azaphilones, falconensins Q-S (7-9) including two brominated derivatives (7 and 8) together with three known analogues (10-12). The structures of the new compounds were elucidated by 1D and 2D NMR spectroscopy and HRESIMS data as well as by comparison with the literature. The absolute configuration of the azaphilone derivatives was established based on single-crystal X-ray diffraction analysis of 5, comparison of NMR data and optical rotations as well as on biogenetic considerations. Compounds 1, 3-9, and 11 showed NF-κB inhibitory activity against the triple negative breast cancer cell line MDA-MB-231 with IC50 values ranging from 11.9 to 72.0 µM.


Subject(s)
Antineoplastic Agents/chemistry , Aquatic Organisms/chemistry , Aspergillus/chemistry , Benzopyrans/chemistry , Geologic Sediments/microbiology , Pigments, Biological/chemistry , Animals , Antineoplastic Agents/pharmacology , Aquatic Organisms/isolation & purification , Aspergillus/isolation & purification , Benzopyrans/pharmacology , Cell Line, Tumor/drug effects , Indian Ocean , Inhibitory Concentration 50 , Pigments, Biological/pharmacology
8.
J Nat Prod ; 81(11): 2493-2500, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30354103

ABSTRACT

Seven new azaphilones, coniellins A-G (1-7), were obtained from the fungus Coniella fragariae that had been isolated from goose dung. Their structures were elucidated by analysis of 1D and 2D NMR as well as HRESIMS data. TDDFT-ECD calculation was used to determine the absolute configuration of 1, while Mosher's method was applied to determine the absolute configuration of 5. While displaying only moderate cytotoxicity, compound 1 exhibited significant inhibition of NF-κB activation in the triple negative breast cancer cell line MDA-MB-231 with an IC50 value of 4.4 µM. Moreover, compounds 1, 4, and 5 clearly reduced tumor cell migration. Compound 1 was the most active derivative tested in this assay and displayed 60% inhibition of tumor cell migration at a dose of 5 µM and 98% inhibition at 10 µM after 24 h.


Subject(s)
Antineoplastic Agents/isolation & purification , Ascomycota/chemistry , Benzopyrans/chemistry , NF-kappa B/antagonists & inhibitors , Pigments, Biological/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/isolation & purification , Benzopyrans/pharmacology , Cell Line, Tumor , Cell Migration Inhibition , Cell Movement/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Pigments, Biological/isolation & purification , Pigments, Biological/pharmacology
9.
Molecules ; 23(8)2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30103404

ABSTRACT

Pseudopterosin, produced by the sea whip of the genus Antillogorgia, possesses a variety of promising biological activities, including potent anti-inflammatory effects. However, few studies examined pseudopterosin in the treatment of cancer cells and, to our knowledge, the ability to inhibit triple-negative breast cancer (TNBC) proliferation or invasion has not been explored. Thus, we evaluated the as-yet unknown mechanism of action of pseudopterosin: Pseudopterosin was able to inhibit proliferation of TNBC. Interestingly, analyzing breast cancer cell proliferation after knocking down glucocorticoid receptor α (GRα) revealed that the antiproliferative effects of pseudopterosin were significantly inhibited when GRα expression was reduced. Furthermore, pseudopterosin inhibited the invasion of MDA-MB-231 3D tumor spheroids embedded in an extracellular-like matrix. Remarkably, the knockdown of GRα in 3D tumor spheroids revealed increased ability of cells to invade the surrounding matrix. In a coculture, encompassing peripheral blood mononuclear cells (PBMC) and MDA-MB-231 cells, and the production of interleukin 6 (IL-6) and interleukin 8 (IL-8) significantly increased compared to a monoculture. Notably, pseudopterosin indicated to block cytokine elevation, representing key players in tumor progression in the coculture. Thus, our results reveal pseudopterosin treatment as a potential novel approach in TNBC therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Glycosides/pharmacology , Receptors, Glucocorticoid/agonists , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cytokines/biosynthesis , Female , Gene Expression , Gene Knockdown Techniques , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Spheroids, Cellular , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Tumor Cells, Cultured
10.
Bioorg Med Chem ; 25(22): 6115-6125, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28214230

ABSTRACT

Substituted goniothalamins containing cyclopropane-groups were efficiently prepared in high yields and good selectivity. Antiproliferative activity was measured on three human cancer cell lines (A549, MCF-7, HBL-100), to show which of the structural elements of goniothalamins is mandatory for cytotoxicity. We found that the configuration of the stereogenic centre of the δ-lactone plays an important role for cytotoxicity. In our studies only (R)-configured goniothalamins showed antiproliferative activity, whereby (R)-configuration accords to natural goniothalamin (R)-1. Additionally, the δ-lactone needs to be unsaturated whereas our results show that the vinylic double bond is not mandatory for cytotoxicity. Furthermore, with a two-fold in vitro and in vivo strategy, we determined the inhibitory effect of the compounds to the yeast protein Pdr5. Here, we clearly demonstrate that the configuration seems to be of minor influence, only, while the nature of the substituent of the phenyl ring is of prime importance.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyrones/chemistry , Pyrones/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Lactones/chemistry , MCF-7 Cells , Pyrones/chemical synthesis , Pyrones/toxicity , Stereoisomerism , Structure-Activity Relationship
11.
Mar Drugs ; 15(9)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28832545

ABSTRACT

Pseudopterosins are a group of marine diterpene glycosides which possess an array of biological activities including anti-inflammatory effects. However, despite the striking in vivo anti-inflammatory potential, the underlying in vitro molecular mode of action remains elusive. To date, few studies have examined pseudopterosin effects on cancer cells. However, to our knowledge, no studies have explored their ability to block cytokine release in breast cancer cells and the respective bidirectional communication with associated immune cells. The present work demonstrates that pseudopterosins have the ability to block the key inflammatory signaling pathway nuclear factor κB (NF-κB) by inhibiting the phosphorylation of p65 and IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor) in leukemia and in breast cancer cells, respectively. Blockade of NF-κB leads to subsequent reduction of the production of the pro-inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα) and monocyte chemotactic protein 1 (MCP-1). Furthermore, pseudopterosin treatment reduces cytokine expression induced by conditioned media in both cell lines investigated. Interestingly, the presence of pseudopterosins induces a nuclear translocation of the glucocorticoid receptor. When knocking down the glucocorticoid receptor, the natural product loses the ability to block cytokine expression. Thus, we hypothesize that pseudopterosins inhibit NF-κB through activation of the glucocorticoid receptor in triple negative breast cancer.


Subject(s)
Biological Products/pharmacology , Cytokines/drug effects , Diterpenes/pharmacology , Glycosides/pharmacology , I-kappa B Proteins/metabolism , Leukemia, Monocytic, Acute/drug therapy , NF-kappa B/drug effects , Triple Negative Breast Neoplasms/drug therapy , Anti-Inflammatory Agents/pharmacology , B-Lymphocytes/drug effects , Biological Products/chemistry , Cell Count , Chemokine CCL2/metabolism , Cytokines/metabolism , Diterpenes/chemistry , Female , Glycosides/chemistry , Humans , I-kappa B Proteins/drug effects , Interleukin-6/metabolism , Marine Biology , NF-kappa B/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
12.
Angew Chem Int Ed Engl ; 55(8): 2894-8, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26800384

ABSTRACT

In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor-associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor-associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor-associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1-glycopeptide vaccines and analyzed their structure-activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Breast Neoplasms/pathology , Breast/cytology , Cancer Vaccines/administration & dosage , Glycopeptides/immunology , Pancreatic Neoplasms/diagnosis , Female , Humans
13.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931419

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-ß (TGF ß) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-ß-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.

14.
Front Microbiol ; 15: 1458622, 2024.
Article in English | MEDLINE | ID: mdl-39397793

ABSTRACT

Three sulfur-containing alkaloids aplospojaveedins A-C (1-3) with a hitherto undescribed carbon skeleton comprising octahy-dronaphthalene, α, ß-unsaturated lactam and glycine-cysteine moieties were isolated from Aplosporella javeedii. Their structures were elucidated by 1D and 2D NMR spectroscopy, HR-MS, X-ray diffraction analysis, DFT-NMR and TDDFT-ECD calculations. A plausible biosynthetic pathway and putative targets are described. The blind docking suggested that 1-3 may have functional effects on several putative targets such as the GPCR cannabinoid receptor 2 or the integrin α5ß1 complex.

15.
Front Immunol ; 14: 1276151, 2023.
Article in English | MEDLINE | ID: mdl-38022577

ABSTRACT

We have integrated dermal dendritic cell surrogates originally generated from the cell line THP-1 as central mediators of the immune reaction in a human full-thickness skin model. Accordingly, sensitizer treatment of THP-1-derived CD14-, CD11c+ immature dendritic cells (iDCs) resulted in the phosphorylation of p38 MAPK in the presence of 1-chloro-2,4-dinitrobenzene (DNCB) (2.6-fold) as well as in degradation of the inhibitor protein kappa B alpha (IκBα) upon incubation with NiSO4 (1.6-fold). Furthermore, NiSO4 led to an increase in mRNA levels of IL-6 (2.4-fold), TNF-α (2-fold) and of IL-8 (15-fold). These results were confirmed on the protein level, with even stronger effects on cytokine release in the presence of NiSO4: Cytokine secretion was significantly increased for IL-8 (147-fold), IL-6 (11.8-fold) and IL-1ß (28.8-fold). Notably, DNCB treatment revealed an increase for IL-8 (28.6-fold) and IL-1ß (5.6-fold). Importantly, NiSO4 treatment of isolated iDCs as well as of iDCs integrated as dermal dendritic cell surrogates into our full-thickness skin model (SM) induced the upregulation of the adhesion molecule clusters of differentiation (CD)54 (iDCs: 1.2-fold; SM: 1.3-fold) and the co-stimulatory molecule and DC maturation marker CD86 (iDCs ~1.4-fold; SM:~1.5-fold) surface marker expression. Noteworthy, the expression of CD54 and CD86 could be suppressed by dexamethasone treatment on isolated iDCs (CD54: 1.3-fold; CD86: 2.1-fold) as well as on the tissue-integrated iDCs (CD54: 1.4-fold; CD86: 1.6-fold). In conclusion, we were able to integrate THP-1-derived iDCs as functional dermal dendritic cell surrogates allowing the qualitative identification of potential sensitizers on the one hand, and drug candidates that potentially suppress sensitization on the other hand in a 3D human skin model corresponding to the 3R principles ("replace", "reduce" and "refine").


Subject(s)
Dinitrochlorobenzene , Interleukin-8 , Humans , Dinitrochlorobenzene/pharmacology , Interleukin-8/metabolism , Langerhans Cells , Interleukin-6/metabolism , Dendritic Cells , Cytokines/metabolism
16.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683887

ABSTRACT

Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3−4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.

17.
Membranes (Basel) ; 13(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36676829

ABSTRACT

Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.

18.
Cell Death Dis ; 13(11): 938, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347842

ABSTRACT

Inhibition of the mitochondrial metabolism offers a promising therapeutic approach for the treatment of cancer. Here, we identify the mycotoxin viriditoxin (VDT), derived from the endophytic fungus Cladosporium cladosporioides, as an interesting candidate for leukemia and lymphoma treatment. VDT displayed a high cytotoxic potential and rapid kinetics of caspase activation in Jurkat leukemia and Ramos lymphoma cells in contrast to solid tumor cells that were affected to a much lesser extent. Most remarkably, human hematopoietic stem and progenitor cells and peripheral blood mononuclear cells derived from healthy donors were profoundly resilient to VDT-induced cytotoxicity. Likewise, the colony-forming capacity was affected only at very high concentrations, which provides a therapeutic window for cancer treatment. Intriguingly, VDT could directly activate the mitochondrial apoptosis pathway in leukemia cells in the presence of antiapoptotic Bcl-2 proteins. The mitochondrial toxicity of VDT was further confirmed by inhibition of mitochondrial respiration, breakdown of the mitochondrial membrane potential (ΔΨm), the release of mitochondrial cytochrome c, generation of reactive oxygen species (ROS), processing of the dynamin-like GTPase OPA1 and subsequent fission of mitochondria. Thus, VDT-mediated targeting of mitochondrial oxidative phosphorylation (OXPHOS) might represent a promising therapeutic approach for the treatment of leukemia and lymphoma without affecting hematopoietic stem and progenitor cells.


Subject(s)
Leukemia , Lymphoma , Mycotoxins , Humans , Mycotoxins/metabolism , Leukocytes, Mononuclear/metabolism , Apoptosis , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Leukemia/drug therapy , Leukemia/metabolism , Lymphoma/drug therapy , Lymphoma/metabolism , Membrane Potential, Mitochondrial
20.
Int J Med Mushrooms ; 22(1): 1-13, 2020.
Article in English | MEDLINE | ID: mdl-32463994

ABSTRACT

Wild-grown fruiting bodies of the basidiomycete Fomitopsis betulina (Agaricomycetes, birch bracket mushroom, = Piptoporus betulinus) in different growing stages were collected and analyzed for their beta-glucan content. It could be shown that no significant difference in beta-glucan content regarding size or location of the collected fruiting bodies could be determined, but all samples displayed high values of beta-glucan in comparison to other well-known culinary or medicinal mushroom species. Furthermore, F. betulina fruiting bodies extracted with cold sodium chloride were separated into several fractions by cross flow ultrafiltration, and glucan and protein content were analyzed. The fractions showed varying amounts of beta-glucan and very low protein contents were detected. Also, bioactivity of the fractionated extract was analyzed. None of the mushroom extract fractions induced significant cytotoxicity after 48 h of incubation at a concentration up to 1 mg/mL. Interestingly, in a scratch wound assay, the extract FbS 1, an ultrafiltrated fraction > 300 kDa, was able to block tumor cell migration by 38% compared to solvent control after 48 h of incubation at a concentration of 0.33 mg/mL. In conclusion, our results have high potential for identifying novel antitumor activities based on F. betulina.


Subject(s)
Agaricales/chemistry , Cell Movement/drug effects , beta-Glucans/pharmacology , A549 Cells , Cell Extracts/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Fruiting Bodies, Fungal/chemistry , Humans , beta-Glucans/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL