Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EMBO J ; 34(16): 2162-81, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26157010

ABSTRACT

The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain largely unknown. Here, we show that JNK is not required for initiation, but progression of phenotypic changes associated with EMT. Such dependency resulted from JNK-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we identified eight novel JNK-induced transcription factors that were required for proper EMT. Three of these factors were also highly expressed in invasive cancer cells where they function in gene regulation to maintain mesenchymal identity. These factors were also induced during neuronal development and function in neuronal migration in vivo. These comprehensive findings uncovered a kinetically distinct role for the JNK pathway in defining the transcriptome that underlies mesenchymal identity and revealed novel transcription factors that mediate these responses during development and disease.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System , Mesoderm/physiology , Cell Cycle , Cell Line , Gene Expression Profiling , Humans , Time-Lapse Imaging , Transcription Factors/metabolism
2.
Genome Res ; 25(9): 1309-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26170447

ABSTRACT

Gene regulation in mammals involves a complex interplay between promoters and distal regulatory elements that function in concert to drive precise spatiotemporal gene expression programs. However, the dynamics of the distal gene regulatory landscape and its function in the transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here, we performed a combinatorial analysis of genome-wide data sets for chromatin accessibility (FAIRE-seq) and the enhancer mark H3K27ac, revealing the highly dynamic nature of distal gene regulation during neurogenesis, which gets progressively restricted to distinct genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further find that the distal accessible and active regions serve as target sites for distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. Mature neurons respond to a sustained activity of NMDA receptors by epigenetic reprogramming at a large number of distal regulatory regions as well as dramatic reorganization of super-enhancers. Such massive remodeling of the distal regulatory landscape in turn results in a transcriptome that confers a transient loss of neuronal identity and gain of cellular plasticity. Furthermore, NMDA receptor activity also induces many novel prosurvival genes that function in neuroprotective pathways. Taken together, these findings reveal the dynamics of the distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate the transcriptome underlying neuronal development and activity.


Subject(s)
Gene Expression Regulation , Neurogenesis/genetics , Neuronal Plasticity/genetics , Regulatory Elements, Transcriptional , Regulatory Sequences, Nucleic Acid , Animals , Cellular Reprogramming/genetics , Chromatin/genetics , Chromatin/metabolism , Cluster Analysis , Epigenesis, Genetic , Gene Expression Profiling , Genomics/methods , High-Throughput Nucleotide Sequencing , Histones/metabolism , Mice , Neurons/metabolism , Organ Specificity , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Transcription Factors , Transcription, Genetic , Transcriptome
3.
Cereb Cortex ; 27(11): 5054-5069, 2017 11 01.
Article in English | MEDLINE | ID: mdl-27655933

ABSTRACT

The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/embryology , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Thalamic Nuclei/cytology , Thalamic Nuclei/embryology , Animals , Axons/metabolism , Cerebral Cortex/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , Male , Mice, Transgenic , Mutation , Neural Pathways/cytology , Neural Pathways/embryology , Neural Pathways/metabolism , Semaphorins/deficiency , Semaphorins/genetics , Thalamic Nuclei/metabolism , Transcriptome
4.
J Cell Sci ; 128(23): 4380-94, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26446258

ABSTRACT

Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.


Subject(s)
Chromatin Assembly and Disassembly/radiation effects , Chromatin/metabolism , DNA Damage , Epigenesis, Genetic/radiation effects , Ultraviolet Rays/adverse effects , Animals , Chromatin/genetics , Chromatin/pathology , Mice , NIH 3T3 Cells
5.
PLoS Genet ; 9(4): e1003373, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593011

ABSTRACT

Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA-mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.


Subject(s)
DNA Methylation/genetics , Leukemia , RNA, Long Noncoding , Tumor Suppressor Proteins , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic , Chromatin/genetics , Chromosomes, Human, Pair 13/genetics , Down-Regulation , Epigenesis, Genetic/genetics , Female , HEK293 Cells , Humans , Leukemia/blood , Leukemia/genetics , Leukemia/physiopathology , Male , Middle Aged , Mutation , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Initiation Site , Transferases , Tumor Suppressor Proteins/blood , Tumor Suppressor Proteins/genetics , Up-Regulation
6.
Proc Natl Acad Sci U S A ; 109(16): E934-43, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22474351

ABSTRACT

Topoisomerases are essential for DNA replication in dividing cells, but their genomic targets and function in postmitotic cells remain poorly understood. Here we show that a switch in the expression from Topoisomerases IIα (Top2α) to IIß (Top2ß) occurs during neuronal differentiation in vitro and in vivo. Genome-scale location analysis in stem cell-derived postmitotic neurons reveals Top2ß binding to chromosomal sites that are methylated at lysine 4 of histone H3, a feature of regulatory regions. Indeed Top2ß-bound sites are preferentially promoters and become targets during the transition from neuronal progenitors to neurons, at a time when cells exit the cell cycle. Absence of Top2ß protein or its activity leads to changes in transcription and chromatin accessibility at many target genes. Top2ß deficiency does not impair stem cell properties and early steps of neuronal differentiation but causes premature death of postmitotic neurons. This neuronal degeneration is caused by up-regulation of Ngfr p75, a gene bound and repressed by Top2ß. These findings suggest a chromatin-based targeting of Top2ß to regulatory regions in the genome to govern the transcriptional program associated with neuronal differentiation and longevity.


Subject(s)
Chromatin/genetics , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , Neurons/metabolism , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Survival/genetics , Cells, Cultured , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Diketopiperazines , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Immunoprecipitation , Male , Mice , Mice, 129 Strain , Mice, Knockout , Neurons/cytology , Neurons/drug effects , Oligonucleotide Array Sequence Analysis , Piperazines/pharmacology , Protein Binding , RNA Interference , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Topoisomerase II Inhibitors/pharmacology
7.
Cell Rep ; 38(10): 110473, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263586

ABSTRACT

Signal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function. STAT3 is phosphorylated in tubular epithelial cells in acute kidney injury, whereas it is expanded to interstitial cells in fibrosis in mice and humans. Foxd1-mediated deletion of Stat3 protects mice from folic-acid- and aristolochic-acid-induced kidney fibrosis. Mechanistically, STAT3 upregulates the inflammation and differentiates pericytes into myofibroblasts. STAT3 activation increases migration and profibrotic signaling in genome-edited, pericyte-like cells. Conversely, blocking Stat3 inhibits detachment, migration, and profibrotic signaling. Furthermore, STAT3 binds to the Collagen1a1 promoter in mouse kidneys and cells. Together, our study identifies a previously unknown function of STAT3 that promotes kidney fibrosis and has therapeutic value in fibrosis.


Subject(s)
Acute Kidney Injury , Pericytes , STAT3 Transcription Factor/metabolism , Acute Kidney Injury/metabolism , Animals , Cell Transdifferentiation , Fibrosis , Forkhead Transcription Factors/metabolism , Kidney/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pericytes/metabolism , Signal Transduction/physiology
8.
Proteins ; 78(5): 1228-42, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19938155

ABSTRACT

To understand structural and thermodynamic features of disulfides within an alpha-helix, a non-redundant dataset comprising of 5025 polypeptide chains containing 2311 disulfides was examined. Thirty-five examples were found of intrahelical disulfides involving a CXXC motif between the N-Cap and third helical positions. GLY and PRO were the most common amino acids at positions 1 and 2, respectively. The N-Cap residue for disulfide bonded CXXC motifs had average (phi,psi) values of (-112 +/- 25.2 degrees , 106 +/- 25.4 degrees ). To further explore conformational requirements for intrahelical disulfides, CYS pairs were introduced at positions N-Cap-3; 1,4; 7,10 in two helices of an Escherichia coli thioredoxin mutant lacking its active site disulfide (nSS Trx). In both helices, disulfides formed spontaneously during purification only at positions N-Cap-3. Mutant stabilities were characterized by chemical denaturation studies (in both oxidized and reduced states) and differential scanning calorimetry (oxidized state only). All oxidized as well as reduced mutants were destabilized relative to nSS Trx. All mutants were redox active, but showed decreased activity relative to wild-type thioredoxin. Such engineered disulfides can be used to probe helix start sites in proteins of unknown structure and to introduce redox activity into proteins. Conversely, a protein with CYS residues at positions N-Cap and 3 of an alpha-helix is likely to have redox activity.


Subject(s)
Amino Acid Motifs , Disulfides/chemistry , Peptides/chemistry , Protein Structure, Secondary , Circular Dichroism , Cysteine/chemistry , Cysteine/metabolism , Databases, Protein , Insulin/chemistry , Molecular Sequence Data , Mutagenesis , Oxidation-Reduction , Peptides/genetics , Protein Denaturation , Protein Folding , Thermodynamics , Thioredoxins/chemistry , Thioredoxins/genetics
9.
Genes Cancer ; 11(1-2): 66-82, 2020.
Article in English | MEDLINE | ID: mdl-32577158

ABSTRACT

BACKGROUNDS AND AIMS: Hepatocellular Carcinoma (HCC) is the leading cause of cancer-related mortality across the world. Non-viral etiological factors including obesity and metabolic syndrome have now become prevalent cause of hepatocellular carcinoma. Sonic Hedgehog (SHH) pathway is activated in hepatocellular carcinoma but its role in regulation of lipogenic molecules during the hepatocarcinogenesis is not known. The aim of present study is to explore the role of SHH pathway in fatty changes associated with hepatocarcinogenesis at different stages and to further correlate the expression of SHH with lipogenic pathways. RESULTS: Our results demonstrated significant increase in lipidosis and fibrosis in DEN+CCl4 treated animals. It was simultaneously associated with the enhanced expression level of SHH, E2F1, adiponectin, and lipogenic molecules in DEN+CCl4 treated animals. These results were also corroborated with the similar findings in higher stage patients' biospecimens. METHODS: N-Nitrosodiethylamine (DEN) and Carbon TetraChloride (CCl4) induced hepatocellular acrcinoma model in male Wistar rats were established to study the expression level of SHH pathway and associated fatty changes during different stages of hepatocarcinogenesis. The expression levels of SHH, E2F1, and lipogenic molecules were checked at different stages of hepatocellular carcinoma. These results were further compared with biospecimens of hepatocellular carcinoma patients of different stages. CONCLUSIONS: Our results revealed an unknown aspect of SHH pathway in hepatocarcinogenesis via its control over lipogenesis. It gives insight into the lipogenic properties of DEN+CCl4 induced rodent hepatocarcinogenesis model and how SHH pathway operate to arbitrate this response.

10.
Nat Commun ; 10(1): 4444, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31570708

ABSTRACT

Ectopic transcription factor expression enables reprogramming of somatic cells to pluripotency, albeit with generally low efficiency. Despite steady progress in the field, the exact molecular mechanisms that coordinate this remarkable transition still remain largely elusive. To better characterize the final steps of pluripotency induction, we optimized an experimental system where pluripotent stem cells are differentiated for set intervals before being reintroduced to pluripotency-supporting conditions. Using this approach, we identify a transient period of high-efficiency reprogramming where ectopic transcription factors, but not serum/LIF alone, rapidly revert cells to pluripotency with near 100% efficiency. After this period, cells reprogram with somatic-like kinetics and efficiencies. We identify a set of OCT4 bound cis-regulatory elements that are dynamically regulated during this transient phase and appear central to facilitating reprogramming. Interestingly, these regions remain hypomethylated during in vitro and in vivo differentiation, which may allow them to act as primary targets of ectopically induced factors during somatic cell reprogramming.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Fibroblasts , Gene Expression Regulation , Genomics , Kinetics , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Stem Cells
11.
PLoS One ; 13(12): e0208194, 2018.
Article in English | MEDLINE | ID: mdl-30513115

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is leading cause of cancer-related mortality and is categorized among the most common malignancies around the world. It is a heterogeneous tumor, which shows significant degree of histopathological heterogeneity. Despite the apparent histopathological diversity there has been very little distinct correlation between histopathological features and molecular aberrations particularly when it comes to the expression level of Wnt and Hh pathway molecules. The role of Wnt and Hh pathways in relation to HCC behavior viz. histopathological heterogeneity and aggressiveness is not known. Determining the sequential molecular changes and associated histopathological characteristic during HCC initiation, promotion, and progression would probably lead to a better treatment and prognosis. METHODS: N-Nitrosodiethylamine (DEN) induced HCC model in male Wistar rats were established to study the expression level of Wnt and Hh pathway molecules during different stages of hepatocarcinogenesis. Their expression levels were checked at mRNA and protein levels at initiation, promotion, and progression stages of HCC. The expression levels of Wnt and Hh pathway molecules were correlated with biospecimens of HCC patients of different stages. RESULTS: In the present study we identified the comprehensive change in the expression pattern of Wnt and Hh pathway molecules in DEN induced rodent hepatocarcinogenesis model. Our results demonstrate that ß-catenin /CTNNB1 plays important role in tumor initiation and promotion by stimulating tumor cell proliferation. The activated Wnt signaling in early stage of HCC is associated with well-differentiated histological pattern. The Hh activity although activated during the initiation stage but is significantly increased during the early promotion stage of hepatocarcinogenesis. The increased activity of both Wnt & Hh pathways during promotion stage is associated with moderately-differentiated histological pattern and was simultaneously linked with an increased expression of MMP9. Furthermore, our data demonstrated that during the progression stage Wnt pathway is modestly down-regulated but the Hh pathway activity sustained which in turn is associated with aggressive and invasive phenotype and poorly-differentiated histopathology. CONCLUSION: Our data uncovers the grade related expression of Wnt and Hh pathway molecules and the potential utility of these molecular signatures in daily clinical practice is to decide best therapy according to patients characteristic. Additionally, our data offer insight into the interaction between Wnt and Hh pathways which triggers HCC development and progression.


Subject(s)
Carcinoma, Hepatocellular/pathology , Hedgehog Proteins/metabolism , Liver Neoplasms, Experimental/pathology , Liver Neoplasms/pathology , Wnt Signaling Pathway , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/pathology , Carcinoma, Hepatocellular/chemically induced , Diethylnitrosamine/toxicity , Female , Hedgehog Proteins/genetics , Humans , Liver Neoplasms, Experimental/chemically induced , Male , Middle Aged , Neoplasm Grading , RNA, Messenger/metabolism , Rats , Rats, Wistar , beta Catenin/genetics , beta Catenin/metabolism
12.
Cell Stem Cell ; 23(4): 557-571.e8, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290178

ABSTRACT

A broad molecular framework of how neural stem cells are specified toward astrocyte fate during brain development has proven elusive. Here we perform comprehensive and integrated transcriptomic and epigenomic analyses to delineate gene regulatory programs that drive the developmental trajectory from mouse embryonic stem cells to astrocytes. We report molecularly distinct phases of astrogliogenesis that exhibit stage- and lineage-specific transcriptomic and epigenetic signatures with unique primed and active chromatin regions, thereby revealing regulatory elements and transcriptional programs underlying astrocyte generation and maturation. By searching for transcription factors that function at these elements, we identified NFIA and ATF3 as drivers of astrocyte differentiation from neural precursor cells while RUNX2 promotes astrocyte maturation. These transcription factors facilitate stage-specific gene expression programs by switching the chromatin state of their target regulatory elements from primed to active. Altogether, these findings provide integrated insights into the genetic and epigenetic mechanisms steering the trajectory of astrogliogenesis.


Subject(s)
Activating Transcription Factor 3/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Expression Regulation/genetics , NFI Transcription Factors/metabolism , Neurogenesis/genetics , Animals , Cells, Cultured , Male , Mice , Mice, Inbred C57BL
13.
Nat Genet ; 50(2): 250-258, 2018 02.
Article in English | MEDLINE | ID: mdl-29358654

ABSTRACT

Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expression and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these factors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA methylation requires DNA replication.


Subject(s)
DNA/metabolism , Epigenesis, Genetic/physiology , Gene Regulatory Networks/physiology , Transcription Factors/metabolism , A549 Cells , Binding Sites/genetics , Cell Lineage/drug effects , Cell Lineage/genetics , Cells, Cultured , Computational Biology , DNA/genetics , Epistasis, Genetic/physiology , GATA4 Transcription Factor/metabolism , Gene Expression Regulation , Genes, Switch , HEK293 Cells , Hep G2 Cells , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Octamer Transcription Factor-3/metabolism , Protein Binding
14.
Cell Discov ; 2: 15045, 2016.
Article in English | MEDLINE | ID: mdl-27462442

ABSTRACT

Pax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that Pax6 targets a large number of promoters in neural progenitors cells. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6-binding data set with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesodermal and endodermal genes, thereby ensuring the unidirectionality of lineage commitment towards neuronal differentiation. Furthermore, Pax6 is critical for inducing activity of transcription factors that elicit neurogenesis and repress others that promote non-neuronal lineages. In addition to many established downstream effectors, Pax6 directly binds and activates a number of genes that are specifically expressed in neural progenitors but have not been previously implicated in neurogenesis. The in utero knockdown of one such gene, Ift74, during brain development impairs polarity and migration of newborn neurons. These findings demonstrate new aspects of the gene regulatory circuitry of Pax6, revealing how it functions to control neuronal development at multiple levels to ensure unidirectionality and proper execution of the neurogenic program.

15.
Mol Cell Biol ; 36(4): 545-58, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26644408

ABSTRACT

Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.


Subject(s)
Circadian Rhythm , Gene Expression Profiling , Gene Regulatory Networks , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Transcriptional Activation , Animals , Computer Simulation , Epigenesis, Genetic , Fibroblasts/metabolism , Mice , Models, Genetic , NIH 3T3 Cells
16.
Sci Rep ; 6: 25828, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27173133

ABSTRACT

Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths.


Subject(s)
Central Nervous System/metabolism , Myelin Sheath/metabolism , Transcriptome/genetics , Animals , Biomarkers/metabolism , Gene Expression Regulation, Developmental , Male , Mice, Inbred C57BL , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Nat Commun ; 4: 2478, 2013.
Article in English | MEDLINE | ID: mdl-24072229

ABSTRACT

Topoisomerases resolve torsional stress, while their function in gene regulation, especially during cellular differentiation, remains unknown. Here we find that the expression of topo II isoforms, topoisomerase IIα and topoisomerase IIß, is the characteristic of dividing and postmitotic tissues, respectively. In embryonic stem cells, topoisomerase IIα preferentially occupies active gene promoters. Topoisomerase IIα inhibition compromises genomic integrity, which results in epigenetic changes, altered kinetics of RNA Pol II at target promoters and misregulated gene expression. Common targets of topoisomerase IIα and topoisomerase IIß are housekeeping genes, while unique targets are involved in proliferation/pluripotency and neurogenesis, respectively. Topoisomerase IIα targets exhibiting bivalent chromatin resolve upon differentiation, concomitant with their activation and occupancy by topoisomerase IIß, features further observed for long genes. These long silent genes display accessible chromatin in embryonic stem cells that relies on topoisomerase IIα activity. These findings suggest that topoisomerase IIα not only contributes to stem-cell transcriptome regulation but also primes developmental genes for subsequent activation upon differentiation.


Subject(s)
Antigens, Neoplasm/genetics , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Animals , Antigens, Neoplasm/metabolism , Cell Differentiation , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Genes, Essential , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
18.
Biochemistry ; 44(44): 14638-46, 2005 Nov 08.
Article in English | MEDLINE | ID: mdl-16262263

ABSTRACT

Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.


Subject(s)
Disulfides/chemistry , Escherichia coli Proteins/chemistry , Protein Structure, Secondary , Thioredoxins/chemistry , Animals , Escherichia coli Proteins/genetics , Hydrogen Bonding , Molecular Sequence Data , Molecular Structure , Oxidation-Reduction , Protein Denaturation , Temperature , Thioredoxins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL