Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Artif Intell ; 5: 952773, 2022.
Article in English | MEDLINE | ID: mdl-36262462

ABSTRACT

Remarkable progress in the fields of machine learning (ML) and artificial intelligence (AI) has led to an increased number of applications of (data-driven) AI systems for the partial or complete control of safety-critical systems. Recently, ML solutions have been particularly popular. Such approaches are often met with concerns regarding their correct and safe execution, which is often caused by missing knowledge or intransparency of their exact functionality. The investigation and derivation of methods for the safety assessment of AI systems are thus of great importance. Among others, these issues are addressed in the field of AI Safety. The aim of this work is to provide an overview of this field by means of a systematic literature review with special focus on the area of highly automated driving, as well as to present a selection of approaches and methods for the safety assessment of AI systems. Particularly, validation, verification, and testing are considered in light of this context. In the review process, two distinguished classes of approaches have been identified: On the one hand established methods, either referring to already published standards or well-established concepts from multiple research areas outside ML and AI. On the other hand newly developed approaches, including methods tailored to the scope of ML and AI which gained importance only in recent years.

2.
Future Med Chem ; 9(11): 1161-1174, 2017 07.
Article in English | MEDLINE | ID: mdl-28722470

ABSTRACT

BACKGROUND: Histone lysine demethylases (KDMs) are well-recognized targets in oncology drug discovery. They function at the post-translation level controlling chromatin conformation and gene transcription. KDM1A is a flavin adenine dinucleotide-dependent amine oxidase, overexpressed in several tumor types, including acute myeloid leukemia, neuroblastoma and non-small-cell lung cancer. Among the many known monoamine oxidase inhibitors screened for KDM1A inhibition, tranylcypromine emerged as a moderately active hit, which irreversibly binds to the flavin adenine dinucleotide cofactor. MATERIAL & METHODS: The KDM1A inhibitors 5a-w were synthesized and tested in vitro and in vivo. The biochemical potency was determined, modulation of target in cells was demonstrated on KDM1A-dependent genes and the anti-clonogenic activity was performed in murine acute promyelocytic Leukemia (APL) blasts. An in vivo efficacy experiment was conducted using an established murine promyelocytic leukemia model. RESULTS: We report a new series of tranylcypromine derivatives substituted on the cyclopropyl moiety, endowed with high potency in both biochemical and cellular assays. CONCLUSION: The most interesting derivative (5a) significantly improved survival rate after oral administration in a murine model of promyelocitic leukemia.


Subject(s)
Antineoplastic Agents/chemical synthesis , Histone Demethylases/antagonists & inhibitors , Leukemia, Promyelocytic, Acute/drug therapy , Tranylcypromine/analogs & derivatives , Tranylcypromine/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival , Humans , Leukemia, Promyelocytic, Acute/pathology , Mice , Structure-Activity Relationship , Tranylcypromine/pharmacokinetics , Tranylcypromine/pharmacology
3.
J Med Chem ; 60(5): 1693-1715, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28186757

ABSTRACT

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.1021.acs.jmedchem.6b01018 ) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Lysine/chemistry , Pyrroles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Histone Demethylases , Humans , Inhibitory Concentration 50 , Pyrroles/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 60(5): 1673-1692, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28186755

ABSTRACT

Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC50, thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-phenyl-4H-thieno[3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC50 = 2.9 µM) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC50 (0.162 µM), capable of inhibiting the target in cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Pyrroles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , High-Throughput Screening Assays , Humans , Proton Magnetic Resonance Spectroscopy , Pyrroles/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
5.
Expert Opin Ther Pat ; 26(12): 1367-1370, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27730846

ABSTRACT

The Jumonji C (JmjC) domain containing histone lysine demethylases have a clear role both in the development and in some diseases including inflammation and cancer. The histone lysine demethylases represent an attractive target for the identification of therapeutic agents and the pyridine derivatives are a scaffolds largely investigated for the identification and development of inhibitors of enzymes of the Jumonji family. This commentary is a scientific evaluation of a patent application US20160102096A1 that describes novel pyridine derivatives in which the introduction of specific substituents is used to modulate the selectivity profile of the inhibitors.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Humans , Inflammation/drug therapy , Inflammation/pathology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Patents as Topic , Pyridines/chemistry , Pyridines/pharmacology
6.
Eur J Med Chem ; 108: 53-67, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26629860

ABSTRACT

In the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines. The goal was to obtain highly potent compounds with a good in vitro ADME profile. In addition, molecular modeling studies unravelled the binding mode of these inhibitors.


Subject(s)
Chromones/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Models, Molecular , Spiro Compounds/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 59(4): 1501-17, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26702542

ABSTRACT

We report the stereoselective synthesis and biological activity of a novel series of tranylcypromine (TCPA) derivatives (14a-k, 15, 16), potent inhibitors of KDM1A. The new compounds strongly inhibit the clonogenic potential of acute leukemia cell lines. In particular three molecules (14d, 14e, and 14g) showing selectivity versus MAO A and remarkably inhibiting colony formation in THP-1 human leukemia cells, were assessed in mouse for their preliminary pharmacokinetic. 14d and 14e were further tested in vivo in a murine acute promyelocytic leukemia model, resulting 14d the most effective. Its two enantiomers were synthesized: the (1S,2R) enantiomer 15 showed higher activity than its (1R,2S) analogue 16, in both biochemical and cellular assays. Compound 15 exhibited in vivo efficacy after oral administration, determining a 62% increased survival in mouse leukemia model with evidence of KDM1A inhibition. The biological profile of compound 15 supports its further investigation as a cancer therapeutic.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Histone Demethylases/antagonists & inhibitors , Leukemia, Promyelocytic, Acute/drug therapy , Tranylcypromine/chemistry , Tranylcypromine/therapeutic use , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Histone Demethylases/metabolism , Humans , Leukemia, Promyelocytic, Acute/metabolism , Structure-Activity Relationship , Tranylcypromine/administration & dosage , Tranylcypromine/pharmacology
8.
Inorg Chem ; 37(16): 4022-4029, 1998 Aug 10.
Article in English | MEDLINE | ID: mdl-11670519

ABSTRACT

Spectroscopic, thermodynamic, and kinetic measurements have been made on aqueous solutions of copper(II) complexes of hexamethylated tren and trimethylated tren (one methylation per primary amine group of tren) with the objective of correlating the influence of geometry (trigonal bipyramidal, evident from UV/vis spectroscopy) and N-alkyl substitution in the ligand on these inherent properties. At 25.0 degrees C the protonation constants of Me(3)tren are not significantly different from those of tren and Me(6)tren, and the stability constant for the Cu(II) complex is of the same order of magnitude as that for the [Cu(tren)(H(2)O)](2+) complex ion. The pK(a) for deprotonation of the coordinated water molecule of [Cu(Me(3)tren)(H(2)O)](2+) is intermediate between the values for the complexes containing the unsubstituted and the fully substituted tren ligand. Substitution (pyridine for water) kinetics measurements employing stopped-flow and temperature-jump methods revealed different patterns of reactivity: pyridine replaces water in [Cu(Me(3)tren)(H(2)O)](2+) with a second-order rate constant of (4.4 +/- 0.8) x 10(2) M(-)(1) s(-)(1) at 25.0 degrees C, whereas the corresponding process for [Cu(Me(6)tren)(H(2)O)](2+) is relatively complex and is discussed in more detail. Substitution in the former complex ion is characterized in the forward and reverse directions, by DeltaH() = 60 +/- 8 and 51.9 +/- 0.9 kJ mol(-)(1), DeltaS() = 5 +/- 27 and -23 +/- 3 J mol(-)(1) K(-)(1), and DeltaV() = -8.7 +/- 4.6 and -6.2 +/- 1.1 cm(3) mol(-)(1), respectively. It is concluded that this reaction follows an I(a) mechanism, similar to that reported for the comparable reaction of [Cu(tren)(H(2)O)](2+). An X-ray structural determination on a crystal of [Cu(2)(Me(3)tren)(2)(CN)](ClO(4))(3).2CH(3)CN demonstrated trigonal bipyramidal geometry about each copper(II) center. As has been found in comparable complexes of tren and Me(6)tren, the axial nitrogen to copper bond is shorter than the equatorial nitrogen-copper bonds, and the angle made by N(axial)-Cu-N(equatorial) is less than 90 degrees (84.6-85.4 degrees ), signifying that each copper ion lies below the plane of the equatorial nitrogen atoms.

9.
ChemMedChem ; 9(3): 523-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24730063

ABSTRACT

Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be "pan"-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Depsipeptides/pharmacology , Drug Discovery , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Structure , Structure-Activity Relationship , Vorinostat
10.
Eur J Med Chem ; 86: 352-63, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25173853

ABSTRACT

Histone demethylase KDM1A (also known as LSD1) has become an attractive therapeutic target for the treatment of cancer as well as other disorders such as viral infections. We report on the synthesis of compounds derived from the expansion of tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. These compounds, which are substituted on the cyclopropyl core moiety, were evaluated for their ability to inhibit KDM1A in vitro as well as to function in cells by modulating the expression of Gfi-1b, a well recognized KDM1A target gene. The molecules were all found to covalently inhibit KDM1A and to become increasingly selective against human monoamine oxidases MAO A and MAO B through the introduction of bulkier substituents on the cyclopropylamine ring. Structural and biochemical analysis of selected trans isomers showed that the two stereoisomers are endowed with similar inhibitory activities against KDM1A, but form different covalent adducts with the FAD co-enzyme.


Subject(s)
Cyclopropanes/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Monoamine Oxidase/metabolism , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Demethylases/metabolism , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
J Med Chem ; 57(12): 5333-47, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24918261

ABSTRACT

In this account, we report the development of a series of substituted cinnamic anilides that represents a novel class of mitochondrial permeability transition pore (mPTP) inhibitors. Initial class expansion led to the establishment of the basic structural requirements for activity and to the identification of derivatives with inhibitory potency higher than that of the standard inhibitor cyclosporine-A (CsA). These compounds can inhibit mPTP opening in response to several stimuli including calcium overload, oxidative stress, and thiol cross-linkers. The activity of the cinnamic anilide mPTP inhibitors turned out to be additive with that of CsA, suggesting for these inhibitors a molecular target different from cyclophylin-D. In vitro and in vivo data are presented for (E)-3-(4-fluoro-3-hydroxy-phenyl)-N-naphthalen-1-yl-acrylamide 22, one of the most interesting compounds in this series, able to attenuate opening of the mPTP and limit reperfusion injury in a rabbit model of acute myocardial infarction.


Subject(s)
1-Naphthylamine/analogs & derivatives , Acrylamides/chemistry , Anilides/chemistry , Cinnamates/chemistry , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Myocardial Reperfusion Injury/drug therapy , 1-Naphthylamine/chemical synthesis , 1-Naphthylamine/chemistry , 1-Naphthylamine/pharmacology , Acrylamides/chemical synthesis , Acrylamides/pharmacology , Anilides/chemical synthesis , Anilides/pharmacology , Animals , Calcium/metabolism , Cinnamates/chemical synthesis , Cinnamates/pharmacology , Female , Male , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Swelling/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Rabbits , Stereoisomerism , Structure-Activity Relationship
12.
Eur J Med Chem ; 64: 273-84, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644210

ABSTRACT

Histone Deacetylases (HDACs) have become important targets for the treatment of cancer and other diseases. In previous studies we described the development of novel spirocyclic HDAC inhibitors based on the combination of privileged structures with hydroxamic acid moieties as zinc binding group. Herein, we report further explorations, which resulted in the discovery of a new class of spiro[2H-(1,3)-benzoxazine-2,4'-piperidine] derivatives. Several compounds showed good potency of around 100 nM and less in the HDAC inhibition assays, submicromolar IC50 values when tested against tumour cell lines and a remarkable stability in human and mouse microsomes. Two representative examples exhibited a good pharmacokinetic profile with an oral bioavailability equal or higher than 35% and one of them studied in an HCT116 murine xenograft model showing a robust tumour growth inhibition. In addition, the two benzoxazines were found to have a minor affinity for the hERG potassium channel compared to their corresponding ketone analogues.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazines/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Neoplasms, Experimental/drug therapy , Spiro Compounds/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , HeLa Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , K562 Cells , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/pathology , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
13.
Pharm Pat Anal ; 1(1): 75-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-24236715

ABSTRACT

Histone deacetylases (HDACs) have become an important target for the treatment of cancer and other diseases. Currently, more than ten HDAC inhibitors have entered clinical studies and two of them have already reached the market. The hydroxamic acid derivative SAHA (also known as vorinostat or Zolinza®) and the cyclic depsipeptide FK228 (romidepsin or Istodax®) have gained approval from the US FDA for the treatment of cutaneous T-cell lymphoma. Nevertheless, there has been a continuous effort aimed at discovering a new generation of clinical candidates with improved pharmaceutical properties. This review provides a summary of the most recent patents published from mid-2009 to mid-2011.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Drug Approval , Histone Deacetylases/drug effects , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/enzymology , Neoplasms/enzymology , Neoplasms/pathology , Patents as Topic , United States , United States Food and Drug Administration , Vorinostat
14.
ChemMedChem ; 7(4): 709-21, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22354629

ABSTRACT

A series of spiro[chromane-2,4'-piperidine] derivatives based on a previously published lead benzyl spirocycle 1 and bearing various N-aryl and N-alkylaryl substituents on the piperidine ring were prepared as novel histone deacetylase (HDAC) inhibitors. The compounds were evaluated for their abilities to inhibit nuclear HDACs, their in vitro antiproliferative activities, and in vitro ADME profiles. Based on these activities, 4-fluorobenzyl and 2-phenylethyl spirocycles were selected for further characterization. In vivo pharmacokinetic (PK) studies showed that both compounds exhibit an overall lower clearance rate, an increased half-life, and higher AUCs after intravenous and oral administration than spiropiperidine 1 under the conditions used. The improved PK behavior of these two compounds also correlated with superior in vivo antitumor activity in an HCT-116 xenograft model.


Subject(s)
Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Piperidines/chemistry , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Blood Proteins/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme Inhibitors , Drug Evaluation, Preclinical , Half-Life , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacokinetics , Injections, Intravenous , Metabolic Clearance Rate , Mice , Mice, Nude , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
Expert Opin Drug Discov ; 6(4): 393-404, 2011 Apr.
Article in English | MEDLINE | ID: mdl-22646017

ABSTRACT

INTRODUCTION: HDAC inhibitors have demonstrated potent anticancer activities in preclinical and clinical studies. Currently, two drugs (SAHA and romidepsin) have gained the FDA approval for the treatment of cutaneous T-cell lymphoma. Clinical efficacy of HDAC inhibitors has been observed in advanced hematological malignancies, while response in other cancers has been in most cases unpredictable and often rather limited. The search for new molecules with the potential to overcome the limitations of the first HDAC inhibitors has become a primary goal in the field of epigenetic drug discovery as well as drugs acting on other chromatin modifying enzymes. AREAS COVERED: The article shortlists seven new HDAC inhibitors that have recently entered clinical studies as representative examples of next generation drugs. The most recently published preclinical profile is reviewed, together with the first clinical data for these compounds. The article then focuses on challenges faced during the progress of first generation HDAC inhibitors and analyzes whether these new compounds are likely to provide a solution to the existing issues and needs. EXPERT OPINION: Next generation HDAC inhibitors have the 'best-in-class' potential, particularly regarding potency and in vivo exposure. However, several issues remain unresolved. For example, none of the presented compounds appears to have a significantly different selectivity profile towards various HDAC isoforms and, thus, none of them may provide a further elucidation between the toxicity seen in more advanced HDAC inhibitors and isoform selectivity. Additionally, a need for a continuous effort on target validation is seen as a necessary requirement for further progress in the field.

16.
J Med Chem ; 54(8): 3051-64, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21417419

ABSTRACT

New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.


Subject(s)
Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Drug Evaluation, Preclinical , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Hydroxamic Acids/chemical synthesis , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
17.
ChemMedChem ; 5(8): 1359-72, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20572281

ABSTRACT

A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub-micromolar IC(50) values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium-to-high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non-microsomal enzymes.


Subject(s)
Antineoplastic Agents/chemical synthesis , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylases/chemistry , Hydroxamic Acids/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Mice , Microsomes, Liver/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship
18.
J Med Chem ; 53(2): 822-39, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20017493

ABSTRACT

The histone deacetylases (HDACs) are able to regulate gene expression, and histone deacetylase inhibitors (HDACi) emerged as a new class of agents in the treatment of cancer as well as other human disorders such as neurodegenerative diseases. In the present investigation, we report on the synthesis and biological evaluation of compounds derived from the expansion of a HDAC inhibitor scaffold having N-hydroxy-3-phenyl-2-propenamide and N-hydroxy-3-(pyridin-2-yl)-2-propenamide as core structures and containing a phenyloxopropenyl moiety, either unsubstituted or substituted by a 4-methylpiperazin-1-yl or 4-methylpiperazin-1-ylmethyl group. The compounds were evaluated for their ability to inhibit nuclear HDACs, as well as for their in vitro antiproliferative activity. Moreover, their metabolic stability in microsomes and aqueous solubility were studied and selected compounds were further characterized by in vivo pharmacokinetic experiments. These compounds showed a remarkable stability in vivo, compared to hydroxamic acid HDAC inhibitors that have already entered clinical trials. The representative compound 30b showed in vivo antitumor activity in a human colon carcinoma xenograft model.


Subject(s)
Acrylamides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Histone Deacetylase Inhibitors/chemical synthesis , Acrylamides/pharmacology , Antineoplastic Agents/pharmacokinetics , Benzene Derivatives , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , HeLa Cells , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/therapeutic use , Humans , Pyridines , Structure-Activity Relationship , Xenograft Model Antitumor Assays
19.
Anal Bioanal Chem ; 376(3): 366-73, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12734628

ABSTRACT

beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.


Subject(s)
Mass Spectrometry/methods , Peptides/chemistry , Phosphoserine/analysis , Phosphothreonine/analysis , Proteins/chemistry , Amino Acid Sequence , Molecular Sequence Data
20.
Proteomics ; 3(7): 1287-98, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12872229

ABSTRACT

An inhibitor affinity chromatography (IAC) method has been developed for the analysis of inhibitor-protein interactions as a complementary approach to two-dimensional electrophoresis for functional proteomics studies. The procedure was developed utilizing a cyclin-dependent kinase 2 (Cdk2) inhibitor coupled to a polymeric resin and validated using a number of proteins interacting with the inhibitor with different specificities. Cdk2 and the other kinases bound and eluted from the resin in accordance with the relative in vitro potency of the inhibitor for each enzyme. Molecular interactions with the Cdk2 inhibitor were compared for HCT116 cancer cells versus rat pancreatic acinar cells. Proteins interacting with the ligand on the IAC matrix were identified by mass spectrometry. Isothermal calorimetry was used to confirm and quantitatively evaluate the binding affinity of some of the interacting proteins. Heat-shock protein (Hsp) 70 and Hsp27 were the strongest interactors with the inhibitor, displaying binding affinities comparable to those of Cdk2. These results support the use of IAC as a general method for the rapid identification and qualitative evaluation of the in vivo targets and potential side effects of a given drug.


Subject(s)
Chromatography/methods , Electrophoresis, Gel, Two-Dimensional/methods , Animals , Blotting, Western , CDC2-CDC28 Kinases/antagonists & inhibitors , Calorimetry , Cell Line , Cell Line, Tumor , Cyclin A/metabolism , Cyclin-Dependent Kinase 2 , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , HSP27 Heat-Shock Proteins , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Humans , Insecta , Ligands , Mass Spectrometry , Models, Chemical , Molecular Chaperones , Neoplasm Proteins/metabolism , Polymers/chemistry , Protein Binding , Proteome , Rats , Spectrometry, Fluorescence , Thermodynamics , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL