Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(27): e2317673121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889126

ABSTRACT

Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.


Subject(s)
Brain , Mitochondria , Oxidative Phosphorylation , Humans , Mitochondria/metabolism , Male , Female , Brain/metabolism , Aged , Stress, Psychological/metabolism , Middle Aged , Prefrontal Cortex/metabolism , Neurons/metabolism , Proteomics/methods , Affect/physiology
2.
Ann Neurol ; 93(4): 805-818, 2023 04.
Article in English | MEDLINE | ID: mdl-36571386

ABSTRACT

OBJECTIVE: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA). METHODS: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record. RESULTS: In AD, the earliest and most consistent associations across all time points included depression, erectile dysfunction, gait abnormalities, hearing loss, and nervous and musculoskeletal symptoms. Cardiomegaly, urinary incontinence, non-epithelial skin cancer, and pneumonia were not significant until 1 year before dementia diagnosis. In VaD, the earliest and most consistent associations across all time points included abnormal electrocardiogram (EKG), cardiac dysrhythmias, cerebrovascular disease, non-epithelial skin cancer, depression, and hearing loss. Atrial fibrillation, occlusion of cerebral arteries, essential tremor, and abnormal reflexes were not significant until 1 year before dementia diagnosis. INTERPRETATION: These findings suggest that some health conditions are associated with future dementia beginning at least 5 years before dementia diagnosis and are consistently seen over time, while others only reach significance closer to the date of diagnosis. These results also show that there are both shared and distinctive health conditions associated with AD and VaD. These results reinforce the need for medical intervention and treatment to lessen the impact of health comorbidities in the aging population. ANN NEUROL 2023;93:805-818.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Dementia, Vascular , Male , Humans , Aged , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Dementia, Vascular/complications , Dementia, Vascular/epidemiology , Longitudinal Studies , Cerebrovascular Disorders/epidemiology , Comorbidity
3.
Mol Psychiatry ; 28(3): 1312-1326, 2023 03.
Article in English | MEDLINE | ID: mdl-36577843

ABSTRACT

We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aß1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Hydroxychloroquine/therapeutic use , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Phenotype , Disease Models, Animal , Amyloid beta-Peptides/metabolism
4.
Gerontology ; 70(3): 269-278, 2024.
Article in English | MEDLINE | ID: mdl-38219723

ABSTRACT

INTRODUCTION: In aging populations, the coexistence of multiple health comorbidities represents a significant challenge for clinicians and researchers. Leveraging advances in omics techniques to characterize these health conditions may provide insight into disease pathogenesis as well as reveal biomarkers for monitoring, prognostication, and diagnosis. Researchers have previously established the utility of big data approaches with respect to comprehensive health outcome measurements in younger populations, identifying protein markers that may provide significant health information with a single blood sample. METHODS: Here, we employed a similar approach in two cohorts of older adults, the Baltimore Longitudinal Study of Aging (mean age = 76.12 years) and InCHIANTI Study (mean age = 66.05 years), examining the relationship between levels of serum proteins and 5 key health outcomes: kidney function, fasting glucose, physical activity, lean body mass, and percent body fat. RESULTS: Correlations between proteins and health outcomes were primarily shared across both older adult cohorts. We further identified that most proteins associated with health outcomes in the older adult cohorts were not associated with the same outcomes in a prior study of a younger population. A subset of proteins, adiponectin, MIC-1, and NCAM-120, were associated with at least three health outcomes in both older adult cohorts but not in the previously published younger cohort, suggesting that they may represent plausible markers of general health in older adult populations. CONCLUSION: Taken together, these findings suggest that comprehensive protein health markers have utility in aging populations and are distinct from those identified in younger adults, indicating unique mechanisms of disease with aging.


Subject(s)
Aging , Proteomics , Humans , Aged , Longitudinal Studies , Body Composition , Outcome Assessment, Health Care
5.
Alzheimers Dement ; 19(4): 1579-1586, 2023 04.
Article in English | MEDLINE | ID: mdl-36637077

ABSTRACT

Dual cognitive and mobility impairments are associated with an increased risk of dementia. Recent studies examining temporal trajectories of mobility and cognitive function in aging found that dual decline is associated with higher dementia risk than memory decline or gait decline only. Although initial data show that individuals with dual decline or impairment have excessive cardiovascular and metabolic risk factors, the causes of dual decline or what underlies dual decline with a high risk of dementia remain largely unknown. In December 2021, the National Institute on Aging Intramural and Extramural Programs jointly organized a workshop on Biology Underlying Moving and Thinking to explore the hypothesis that older persons with dual decline may develop dementia through a specific pathophysiological pathway. The working group discussed assessment methods for dual decline and possible mechanisms connecting dual decline with dementia risk and pinpointed the most critical questions to be addressed from a translational perspective.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Aged , Aged, 80 and over , Dementia/complications , Cognition , Aging/physiology , Risk Factors
6.
Alzheimers Dement ; 19(10): 4335-4345, 2023 10.
Article in English | MEDLINE | ID: mdl-37216632

ABSTRACT

INTRODUCTION: Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS: We examined the temporal order of changes in plasma amyloid-ß ratio ( A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios ( p-tau181 / A ß 42 $\text{p-tau181}/\mathrm{A}{\beta}_{42}$ , p-tau231 / A ß 42 $\text{p-tau231}/\mathrm{A}{\beta}_{42}$ ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS: PiB groups exhibited different rates of longitudinal change in A ß 42 / A ß 40 ( ß = 5.41 × 10 - 4 , SE = 1.95 × 10 - 4 , p = 0.0073 ) ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}\ ( {\beta \ = \ 5.41 \times {{10}}^{ - 4},{\rm{\ SE\ }} = \ 1.95 \times {{10}}^{ - 4},\ p\ = \ 0.0073} )$ . Change in brain amyloid correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). The greatest relative decline in A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ (-1%/year) preceded brain amyloid positivity by 41 years (95% CI = [32, 53]). DISCUSSION: Plasma A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time. HIGHLIGHTS Plasma A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ declines over time among PiB- but does not change among PiB+. Phosphorylated-tau to Aß42 ratios increase over time among PiB+ but do not change among PiB-. Rate of change in brain amyloid is correlated with change in GFAP and neurofilament light chain. The greatest decline in A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may precede brain amyloid positivity by decades.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Positron-Emission Tomography , Biomarkers , tau Proteins/metabolism
7.
Alzheimers Dement ; 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36161763

ABSTRACT

After clinical trial failures in symptomatic Alzheimer's disease (AD), our field has moved to earlier intervention in cognitively normal individuals with biomarker evidence of AD. This offers potential for dementia prevention, but mainly low and variable rates of progression to AD dementia reduce the usefulness of trials' data in decision making by potential prescribers. With results from several Phase 3 secondary prevention studies anticipated within the next few years and the Food and Drug Administration's recent endorsement of amyloid beta as a surrogate outcome biomarker for AD clinical trials, it is time to question the clinical significance of changes in biomarkers, adequacy of current trial durations, and criteria for treatment success if cognitively unimpaired patients and their doctors are to meaningfully evaluate the potential value of new agents. We argue for a change of direction toward trial designs that can unambiguously inform clinical decision making about dementia risk and progression.

8.
PLoS Med ; 18(5): e1003615, 2021 05.
Article in English | MEDLINE | ID: mdl-34043628

ABSTRACT

BACKGROUND: While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis. METHODS AND FINDINGS: We used a 3-step study design to examine the role of the primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA) as well as their principal biosynthetic precursor, 7α-hydroxycholesterol (7α-OHC), in dementia. In Step 1, we tested whether serum markers of cholesterol catabolism were associated with brain amyloid accumulation, white matter lesions (WMLs), and brain atrophy. In Step 2, we tested whether exposure to bile acid sequestrants (BAS) was associated with risk of dementia. In Step 3, we examined plausible mechanisms underlying these findings by testing whether brain levels of primary BAs and gene expression of their principal receptors are altered in AD. Step 1: We assayed serum concentrations CA, CDCA, and 7α-OHC and used linear regression and mixed effects models to test their associations with brain amyloid accumulation (N = 141), WMLs, and brain atrophy (N = 134) in the Baltimore Longitudinal Study of Aging (BLSA). The BLSA is an ongoing, community-based cohort study that began in 1958. Participants in the BLSA neuroimaging sample were approximately 46% male with a mean age of 76 years; longitudinal analyses included an average of 2.5 follow-up magnetic resonance imaging (MRI) visits. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 1,666) to validate longitudinal neuroimaging results in BLSA. ADNI is an ongoing, community-based cohort study that began in 2003. Participants were approximately 55% male with a mean age of 74 years; longitudinal analyses included an average of 5.2 follow-up MRI visits. Lower serum concentrations of 7α-OHC, CA, and CDCA were associated with higher brain amyloid deposition (p = 0.041), faster WML accumulation (p = 0.050), and faster brain atrophy mainly (false discovery rate [FDR] p = <0.001-0.013) in males in BLSA. In ADNI, we found a modest sex-specific effect indicating that lower serum concentrations of CA and CDCA were associated with faster brain atrophy (FDR p = 0.049) in males.Step 2: In the Clinical Practice Research Datalink (CPRD) dataset, covering >4 million registrants from general practice clinics in the United Kingdom, we tested whether patients using BAS (BAS users; 3,208 with ≥2 prescriptions), which reduce circulating BAs and increase cholesterol catabolism, had altered dementia risk compared to those on non-statin lipid-modifying therapies (LMT users; 23,483 with ≥2 prescriptions). Patients in the study (BAS/LMT) were approximately 34%/38% male and with a mean age of 65/68 years; follow-up time was 4.7/5.7 years. We found that BAS use was not significantly associated with risk of all-cause dementia (hazard ratio (HR) = 1.03, 95% confidence interval (CI) = 0.72-1.46, p = 0.88) or its subtypes. We found a significant difference between the risk of VaD in males compared to females (p = 0.040) and a significant dose-response relationship between BAS use and risk of VaD (p-trend = 0.045) in males.Step 3: We assayed brain tissue concentrations of CA and CDCA comparing AD and control (CON) samples in the BLSA autopsy cohort (N = 29). Participants in the BLSA autopsy cohort (AD/CON) were approximately 50%/77% male with a mean age of 87/82 years. We analyzed single-cell RNA sequencing (scRNA-Seq) data to compare brain BA receptor gene expression between AD and CON samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 46). ROSMAP is an ongoing, community-based cohort study that began in 1994. Participants (AD/CON) were approximately 56%/36% male with a mean age of 85/85 years. In BLSA, we found that CA and CDCA were detectable in postmortem brain tissue samples and were marginally higher in AD samples compared to CON. In ROSMAP, we found sex-specific differences in altered neuronal gene expression of BA receptors in AD. Study limitations include the small sample sizes in the BLSA cohort and likely inaccuracies in the clinical diagnosis of dementia subtypes in primary care settings. CONCLUSIONS: We combined targeted metabolomics in serum and amyloid positron emission tomography (PET) and MRI of the brain with pharmacoepidemiologic analysis to implicate dysregulation of cholesterol catabolism in dementia pathogenesis. We observed that lower serum BA concentration mainly in males is associated with neuroimaging markers of dementia, and pharmacological lowering of BA levels may be associated with higher risk of VaD in males. We hypothesize that dysregulation of BA signaling pathways in the brain may represent a plausible biologic mechanism underlying these results. Together, our observations suggest a novel mechanism relating abnormalities in cholesterol catabolism to risk of dementia.


Subject(s)
Bile Acids and Salts/metabolism , Dementia/epidemiology , Aged , Aged, 80 and over , Bile Acids and Salts/biosynthesis , Dementia/metabolism , Female , Gene Expression Profiling , Humans , Incidence , Male , Metabolomics , Middle Aged , Pharmacoepidemiology , United Kingdom/epidemiology
10.
PLoS Med ; 17(1): e1003012, 2020 01.
Article in English | MEDLINE | ID: mdl-31978055

ABSTRACT

BACKGROUND: There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways. METHODS AND FINDINGS: We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators. CONCLUSIONS: In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Metabolic Networks and Pathways/physiology , Metabolome/physiology , Polyamines/metabolism , Transcriptome/physiology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , Female , Humans , Longitudinal Studies , Male , Methylation
11.
Acta Neuropathol ; 140(1): 25-47, 2020 07.
Article in English | MEDLINE | ID: mdl-32333098

ABSTRACT

Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polß haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , DNA Repair-Deficiency Disorders/metabolism , Mitochondria/metabolism , Sex Characteristics , Alzheimer Disease/pathology , Animals , Brain/pathology , Caenorhabditis elegans , DNA Repair-Deficiency Disorders/pathology , Energy Metabolism/physiology , Female , Glucose/metabolism , Humans , Lipid Metabolism/physiology , Male , Mice , Mitochondria/pathology
12.
Brain ; 142(9): 2581-2589, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31497858

ABSTRACT

Autopsy measures of Alzheimer's disease neuropathology have been leveraged as endophenotypes in previous genome-wide association studies (GWAS). However, despite evidence of sex differences in Alzheimer's disease risk, sex-stratified models have not been incorporated into previous GWAS analyses. We looked for sex-specific genetic associations with Alzheimer's disease endophenotypes from six brain bank data repositories. The pooled dataset included 2701 males and 3275 females, the majority of whom were diagnosed with Alzheimer's disease at autopsy (70%). Sex-stratified GWAS were performed within each dataset and then meta-analysed. Loci that reached genome-wide significance (P < 5 × 10-8) in stratified models were further assessed for sex interactions. Additional analyses were performed in independent datasets leveraging cognitive, neuroimaging and CSF endophenotypes, along with age-at-onset data. Outside of the APOE region, one locus on chromosome 7 (rs34331204) showed a sex-specific association with neurofibrillary tangles among males (P = 2.5 × 10-8) but not females (P = 0.85, sex-interaction P = 2.9 × 10-4). In follow-up analyses, rs34331204 was also associated with hippocampal volume, executive function, and age-at-onset only among males. These results implicate a novel locus that confers male-specific protection from tau pathology and highlight the value of assessing genetic associations in a sex-specific manner.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Sex Characteristics , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Amyloid beta-Peptides/genetics , Cohort Studies , Female , Genetic Predisposition to Disease/epidemiology , Humans , Male , tau Proteins/genetics
13.
Int J Mol Sci ; 21(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070008

ABSTRACT

Rapid lifestyle and dietary changes have contributed to a rise in the global prevalence of metabolic syndrome (MetS), which presents a potential healthcare crisis, owing to its association with an increased burden of multiple cardiovascular and neurological diseases. Prior work has identified the role that genetic, lifestyle, and environmental factors can play in the prevalence of MetS. Metabolomics is an important tool to study alterations in biochemical pathways intrinsic to the pathophysiology of MetS. We undertook a metabolomic study of MetS in serum samples from two ethnically distinct, well-characterized cohorts-the Baltimore Longitudinal Study of Aging (BLSA) from the U.S. and the Tsuruoka Metabolomics Cohort Study (TMCS) from Japan. We used multivariate logistic regression to identify metabolites that were associated with MetS in both cohorts. Among the top 25 most significant (lowest p-value) metabolite associations with MetS in each cohort, we identified 18 metabolites that were shared between TMCS and BLSA, the majority of which were classified as amino acids. These associations implicate multiple biochemical pathways in MetS, including branched-chain amino acid metabolism, glutathione production, aromatic amino acid metabolism, gluconeogenesis, and the tricarboxylic acid cycle. Our results suggest that fundamental alterations in amino acid metabolism may be central features of MetS.


Subject(s)
Aging/metabolism , Metabolic Syndrome/blood , Metabolome/genetics , Metabolomics , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , Amino Acids/metabolism , Female , Humans , Longitudinal Studies , Male , Metabolic Syndrome/pathology
14.
Int J Mol Sci ; 21(4)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079087

ABSTRACT

Metabolic syndrome (MetS) affects an increasing number of older adults worldwide. Cross-cultural comparisons can provide insight into how factors, including genetic, environmental, and lifestyle, may influence MetS prevalence. Metabolomics, which measures the biochemical products of cell processes, can be used to enhance a mechanistic understanding of how biological factors influence metabolic outcomes. In this study we examined associations between serum metabolite concentrations, representing a range of biochemical pathways and metabolic syndrome in two older adult cohorts: The Tsuruoka Metabolomics Cohort Study (TMCS) from Japan (n = 104) and the Baltimore Longitudinal Study of Aging (BLSA) from the United States (n = 146). We used logistic regression to model associations between MetS and metabolite concentrations. We found that metabolites from the phosphatidylcholines-acyl-alkyl, sphingomyelin, and hexose classes were significantly associated with MetS and risk factor outcomes in both cohorts. In BLSA, metabolites across all classes were uniquely associated with all outcomes. In TMCS, metabolites from the amino acid, biogenic amines, and free fatty acid classes were uniquely associated with MetS, and metabolites from the sphingomyelin class were uniquely associated with elevated triglycerides. The metabolites and metabolite classes we identified may be relevant for future studies exploring disease mechanisms and identifying novel precision therapy targets for individualized medicine.


Subject(s)
Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Metabolome , Aged , Aged, 80 and over , Aging , Cohort Studies , Female , Humans , Japan/epidemiology , Longitudinal Studies , Male , Metabolic Syndrome/epidemiology , Metabolomics , Risk Factors , United States/epidemiology
15.
Age Ageing ; 48(3): 367-373, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30726871

ABSTRACT

BACKGROUND: overweight or obesity at ages <65 years associates with increased dementia incidence, but at ≥65 years estimates are paradoxical. Weight loss before dementia diagnosis, plus smoking and diseases causing weight loss may confound associations. OBJECTIVE: to estimate weight loss before dementia diagnosis, plus short and longer-term body mass index associations with incident dementia in 65-74 year olds within primary care populations in England. METHODS: we studied dementia diagnosis free subjects: 257,523 non-smokers without baseline cancer, heart failure or multi-morbidity (group A) plus 161,927 with these confounders (group B), followed ≤14.9 years. Competing hazard models accounted for mortality. RESULTS: in group A, 9,774 were diagnosed with dementia and in those with repeat weight measures, 54% lost ≥2.5 kg during 10 years pre-diagnosis. During <10 years obesity (≥30.0 kg/m2) or overweight (25.0 to <30.0) were inversely associated with incident dementia (versus 22.5 to <25.0). However, from 10 to 14.9 years, obesity was associated with increased dementia incidence (hazard ratio [HR] 1.17; 95% CI: 1.03-1.32). Overweight protective associations disappeared in longer-term analyses (HR, 1.01; 95% CI: 0.90-1.13). In group B, (n = 6,070 with incident dementia), obesity was associated with lower dementia risks in the short and longer-term. CONCLUSIONS: in 65-74 year olds (free of smoking, cancer, heart failure or multi-morbidity at baseline) obesity associates with higher longer-term incidence of dementia. Paradoxical associations were present short-term and in those with likely confounders. Reports of protective effects of obesity or overweight on dementia risk in older groups may reflect biases, especially weight loss before dementia diagnosis.


Subject(s)
Dementia/etiology , Obesity/complications , Age Factors , Aged , Alcohol Drinking/adverse effects , Body Mass Index , Female , Humans , Male , Overweight/complications , Risk Factors , Smoking/adverse effects , Time Factors , United Kingdom , Weight Loss
16.
JAMA ; 331(23): 1985-1986, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38709521

ABSTRACT

This Viewpoint discusses how data gaps in published research impede clinicians' ability to clearly discuss the risks and benefits of amyloid-lowering drugs for treating Alzheimer disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Risk
17.
Alzheimers Dement ; 15(1): 8-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30465754

ABSTRACT

INTRODUCTION: Primary age-related tauopathy (PART) is a recently described entity that can cause cognitive impairment in the absence of Alzheimer's disease (AD). Here, we compared neuropathological features, tau haplotypes, apolipoprotein E (APOE) genotypes, and cognitive profiles in age-matched subjects with PART and AD pathology. METHODS: Brain autopsies (n = 183) were conducted on participants 85 years and older from the Baltimore Longitudinal Study of Aging and Johns Hopkins Alzheimer's Disease Research Center. Participants, normal at enrollment, were followed with periodic cognitive evaluations until death. RESULTS: Compared with AD, PART subjects showed significantly slower rates of decline on measures of memory, language, and visuospatial performance. They also showed lower APOE ε4 allele frequency (4.1% vs. 17.6%, P = .0046). DISCUSSION: Our observations suggest that PART is separate from AD and its distinction will be important for the clinical management of patients with cognitive impairment and for public health care planning.


Subject(s)
Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cognitive Dysfunction/genetics , Neuropathology , Tauopathies/genetics , Aged, 80 and over , Apolipoprotein E4/genetics , Autopsy , Baltimore , Brain , Genotype , Humans , Longitudinal Studies , Memory , Neuropsychological Tests
18.
Alzheimers Dement ; 15(12): 1588-1602, 2019 12.
Article in English | MEDLINE | ID: mdl-31677936

ABSTRACT

INTRODUCTION: Multidomain intervention for Alzheimer's disease (AD) risk reduction is an emerging therapeutic paradigm. METHODS: Patients were prescribed individually tailored interventions (education/pharmacologic/nonpharmacologic) and rated on compliance. Normal cognition/subjective cognitive decline/preclinical AD was classified as Prevention. Mild cognitive impairment due to AD/mild-AD was classified as Early Treatment. Change from baseline to 18 months on the modified Alzheimer's Prevention Cognitive Composite (primary outcome) was compared against matched historical control cohorts. Cognitive aging composite (CogAging), AD/cardiovascular risk scales, and serum biomarkers were secondary outcomes. RESULTS: One hundred seventy-four were assigned interventions (age 25-86). Higher-compliance Prevention improved more than both historical cohorts (P = .0012, P < .0001). Lower-compliance Prevention also improved more than both historical cohorts (P = .0088, P < .0055). Higher-compliance Early Treatment improved more than lower compliance (P = .0007). Higher-compliance Early Treatment improved more than historical cohorts (P < .0001, P = .0428). Lower-compliance Early Treatment did not differ (P = .9820, P = .1115). Similar effects occurred for CogAging. AD/cardiovascular risk scales and serum biomarkers improved. DISCUSSION: Individualized multidomain interventions may improve cognition and reduce AD/cardiovascular risk scores in patients at-risk for AD dementia.


Subject(s)
Alzheimer Disease/therapy , Cognitive Dysfunction/prevention & control , Health Education , Patient Compliance , Prodromal Symptoms , Risk Reduction Behavior , Aged , Biomarkers/blood , Cardiovascular Diseases , Cognition , Female , Humans , Male , Middle Aged , Prospective Studies
19.
PLoS Med ; 15(1): e1002482, 2018 01.
Article in English | MEDLINE | ID: mdl-29370177

ABSTRACT

BACKGROUND: The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. METHODS AND FINDINGS: Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each metabolite to severity of AD pathology and disease progression (Endophenotype Association Score in Early Alzheimer's Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and C16:1 (SM C16:0, SM C18:1, SM C16:1) and hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy and AD progression across prodromal and preclinical stages. Higher log-transformed blood concentrations of all four sphingolipids in cognitively normal individuals were significantly associated with increased risk of future conversion to incident AD: SM C16:0 (hazard ratio [HR] = 4.430, 95% confidence interval [CI] = 1.703-11.520, p = 0.002), SM C16:1 (HR = 3.455, 95% CI = 1.516-7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373-9.122, p = 0.009), and SM C18:1 (HR = 2.255, 95% CI = 1.047-4.855, p = 0.038). The sphingolipid species identified map to several biologically relevant pathways implicated in AD, including tau phosphorylation, amyloid-ß (Aß) metabolism, calcium homeostasis, acetylcholine biosynthesis, and apoptosis. Our study has limitations: the relatively small number of brain tissue samples may have limited our power to detect significant associations, control for heterogeneity between groups, and replicate our findings in independent, autopsy-derived brain samples. CONCLUSIONS: We present a novel framework to identify biologically relevant brain and blood metabolites associated with disease pathology and progression during the prodromal and preclinical stages of AD. Our results show that perturbations in sphingolipid metabolism are consistently associated with endophenotypes across preclinical and prodromal AD, as well as with AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the early detection of AD, and correcting perturbations in sphingolipid metabolism may be a plausible and novel therapeutic strategy in AD.


Subject(s)
Alzheimer Disease/metabolism , Blood/metabolism , Brain/metabolism , Disease Progression , Metabolome , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Baltimore , Biomarkers/blood , Biomarkers/metabolism , Blood Chemical Analysis , Brain/pathology , Female , Humans , Longitudinal Studies , Male
20.
Acta Neuropathol ; 136(6): 857-872, 2018 12.
Article in English | MEDLINE | ID: mdl-29967939

ABSTRACT

Cerebrospinal fluid (CSF) levels of amyloid-ß 42 (Aß42) and tau have been evaluated as endophenotypes in Alzheimer's disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations. Data came from a previous genome-wide association study (GWAS) of CSF Aß42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex (PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data from the Religious Orders Study and Rush Memory and Aging Project. In Aß42, we observed sex interactions at one previous and one novel locus: rs316341 within SERPINB1 (p = 0.04) and rs13115400 near LINC00290 (p = 0.002). These loci showed stronger associations among females (ß = - 0.03, p = 4.25 × 10-8; ß = 0.03, p = 3.97 × 10-8) than males (ß = - 0.02, p = 0.009; ß = 0.01, p = 0.20). Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated with higher levels of amyloidosis among females (corrected p values < 0.02) but not males (p > 0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to GMNC (p = 0.004), driven by a stronger association among females (ß = 0.05, p = 4.57 × 10-10) compared to males (ß = 0.02, p = 0.03). There was also a sex-specific association between rs1393060 and tangle density at autopsy (pfemale = 0.047; pmale = 0.96), and higher levels of expression of two genes within this locus were associated with lower tangle density among females (OSTN p = 0.006; CLDN16 p = 0.002) but not males (p ≥ 0.32). Results suggest a female-specific role for SERPINB1 in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may improve understanding of AD's genetic architecture.


Subject(s)
Alzheimer Disease , Biomarkers/cerebrospinal fluid , Brain/pathology , Claudins/genetics , Muscle Proteins/genetics , Serpins/genetics , Transcription Factors/genetics , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloidosis/complications , Amyloidosis/genetics , Apolipoproteins E/genetics , Brain/metabolism , Brain/physiopathology , Female , Genome-Wide Association Study , Genotype , Humans , Male , Mutation/genetics , Peptide Fragments/cerebrospinal fluid , Sex Factors , tau Proteins/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL