Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Bioorg Med Chem Lett ; 22(10): 3392-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22542194

ABSTRACT

A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFß receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFß induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.


Subject(s)
Cicatrix/prevention & control , Drug Discovery , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Skin/drug effects , Animals , Models, Molecular , Phosphorylation , Rats , Receptor, Transforming Growth Factor-beta Type I
2.
J Biol Chem ; 285(11): 8340-51, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20061378

ABSTRACT

Sirtuins catalyze NAD(+)-dependent protein deacetylation and are critical regulators of transcription, apoptosis, metabolism, and aging. There are seven human sirtuins (SIRT1-7), and SIRT1 has been implicated as a key mediator of the pathways downstream of calorie restriction that have been shown to delay the onset and reduce the incidence of age-related diseases such as type 2 diabetes. Increasing SIRT1 activity, either by transgenic overexpression of the Sirt1 gene in mice or by pharmacological activation by small molecule activators resveratrol and SRT1720, has shown beneficial effects in rodent models of type 2 diabetes, indicating that SIRT1 may represent an attractive therapeutic target. Herein, we have assessed purported SIRT1 activators by employing biochemical assays utilizing native substrates, including a p53-derived peptide substrate lacking a fluorophore as well as the purified native full-length protein substrates p53 and acetyl-CoA synthetase1. SRT1720, its structurally related compounds SRT2183 and SRT1460, and resveratrol do not lead to apparent activation of SIRT1 with native peptide or full-length protein substrates, whereas they do activate SIRT1 with peptide substrate containing a covalently attached fluorophore. Employing NMR, surface plasmon resonance, and isothermal calorimetry techniques, we provide evidence that these compounds directly interact with fluorophore-containing peptide substrates. Furthermore, we demonstrate that SRT1720 neither lowers plasma glucose nor improves mitochondrial capacity in mice fed a high fat diet. SRT1720, SRT2183, SRT1460, and resveratrol exhibit multiple off-target activities against receptors, enzymes, transporters, and ion channels. Taken together, we conclude that SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Sirtuin 1/metabolism , Stilbenes/pharmacology , Acetylation/drug effects , Allosteric Regulation/drug effects , Animals , Blood Glucose/drug effects , Calorimetry , Diabetes Mellitus, Type 2/metabolism , Dietary Fats/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Mice , Mice, Obese , Nuclear Magnetic Resonance, Biomolecular , Resveratrol , Rhodamines , Stilbenes/chemistry , Substrate Specificity , Surface Plasmon Resonance , Tumor Suppressor Protein p53/metabolism
3.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21604056

ABSTRACT

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Subject(s)
Drug Discovery , Peptide Fragments/chemistry , Proteins/chemistry , Binding Sites , Combinatorial Chemistry Techniques/methods , Crystallography, X-Ray , Drug Industry , High-Throughput Screening Assays , Humans , Ligands , Magnetic Resonance Spectroscopy , Peptide Library , Protein Conformation
4.
ACS Med Chem Lett ; 10(1): 80-85, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655951

ABSTRACT

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.

5.
J Bacteriol ; 189(22): 8196-205, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17873050

ABSTRACT

Phosphopantetheine adenylyltransferase (PPAT) from Escherichia coli is an essential hexameric enzyme that catalyzes the penultimate step in coenzyme A (CoA) biosynthesis and is a target for antibacterial drug discovery. The enzyme utilizes Mg-ATP and phosphopantetheine (PhP) to generate dephospho-CoA (dPCoA) and pyrophosphate. When overexpressed in E. coli, PPAT copurifies with tightly bound CoA, suggesting a feedback inhibitory role for this cofactor. Using an enzyme-coupled assay for the forward-direction reaction (dPCoA-generating) and isothermal titration calorimetry, we investigated the steady-state kinetics and ligand binding properties of PPAT. All substrates and products bind the free enzyme, and product inhibition studies are consistent with a random bi-bi kinetic mechanism. CoA inhibits PPAT and is competitive with ATP, PhP, and dPCoA. Previously published structures of PPAT crystallized at pH 5.0 show half-the-sites reactivity for PhP and dPCoA and full occupancy by ATP and CoA. Ligand-binding studies at pH 8.0 show that ATP, PhP, dPCoA, and CoA occupy all six monomers of the PPAT hexamer, although CoA exhibits two thermodynamically distinct binding modes. These results suggest that the half-the-sites reactivity observed in PPAT crystal structures may be pH dependent. In light of previous studies on the regulation of CoA biosynthesis, the PPAT kinetic and ligand binding data suggest that intracellular PhP concentrations modulate the distribution of PPAT monomers between high- and low-affinity CoA binding modes. This model is consistent with PPAT serving as a "backup" regulator of pathway flux relative to pantothenate kinase.


Subject(s)
Coenzyme A/biosynthesis , Escherichia coli/enzymology , Nucleotidyltransferases/metabolism , Calorimetry , Escherichia coli/genetics , Kinetics , Models, Molecular , Nucleotidyltransferases/genetics , Pantetheine/analogs & derivatives , Pantetheine/metabolism , Protein Binding , Protein Conformation
6.
J Pharm Biomed Anal ; 28(1): 23-30, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-11861105

ABSTRACT

A column trapping system has been incorporated into high performance liquid chromatography-nuclear magnetic resonance-mass spectrometry (HPLC-NMR-MS) to reduce data acquisition time of NMR experiments. The system uses a trapping column to capture analytes after the HPLC column and back flush trapped analyte to the flow cell of the NMR probe for detection. A dilution solvent is mixed with eluent from HPLC column to reduce the influence of the organic content in the mobile phase before column trapping. The trapping column is also coupled with a mass spectrometer (MS) to get complementary MS data on the same peak. Studies on 1-hydroxylated 9-amino-1,2,3,4-tetrahydro-acridine (1-OH tacrine), indomethacin and testosterone with the column trapping system showed good recovery of analytes and over 3-fold mean increase in UV-VIS signal intensity. The time saving on NMR experiments with the column trapping system was demonstrated by the analysis of dog microsomal incubate with tacrine.


Subject(s)
Microsomes/metabolism , Tacrine/analysis , Tacrine/metabolism , Animals , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Chromatography, High Pressure Liquid/methods , Dogs , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Tacrine/chemistry
7.
Chem Biol Drug Des ; 75(5): 444-54, 2010 May.
Article in English | MEDLINE | ID: mdl-20486930

ABSTRACT

High-throughput screening is utilized by pharmaceutical researchers and, increasingly, academic investigators to identify agents that act upon enzymes, receptors, and cellular processes. Screening hits include molecules that specifically bind the target and a greater number of non-specific compounds. It is necessary to 'triage' these hits to identify the subset worthy of further exploration. As part of our antibacterial drug discovery effort, we applied a suite of biochemical and biophysical tools to accelerate the triage process. We describe application of these tools to a series of 9-oxo-4,9-dihydropyrazolo[5,1-b]quinazoline-2-carboxylic acids (PQ) hits from a screen of Escherichia coli phosphopantetheine adenylyltransferase (PPAT). Initial confirmation of specific binding to phosphopantetheine adenylyltransferase was obtained using biochemical and biophysical tools, including a novel orthogonal assay, isothermal titration calorimetry, and saturation transfer difference NMR. To identify the phosphopantetheine adenylyltransferase sub-site bound by these inhibitors, two techniques were utilized: steady-state enzyme kinetics and a novel (19)F NMR method in which fluorine-containing fragments that bind the ATP and/or phosphopantetheine sites serve as competitive reporter probes. These data are consistent with PQs binding the ATP sub-site. In addition to identification of a series of PPAT inhibitors, the described hit triage process is broadly applicable to other enzyme targets in which milligram quantities of purified target protein are available.


Subject(s)
Anti-Bacterial Agents/chemistry , Escherichia coli/enzymology , High-Throughput Screening Assays , Nucleotidyltransferases/antagonists & inhibitors , Quinazolines/chemistry , Anti-Bacterial Agents/pharmacology , Binding, Competitive , Biophysical Phenomena , Calorimetry , Catalytic Domain , Fluorine/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Nucleotidyltransferases/metabolism , Quinazolines/pharmacology , Structure-Activity Relationship
8.
ACS Chem Biol ; 4(6): 473-83, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19413326

ABSTRACT

As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbon-Nitrogen Ligases/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Binding Sites , Carbon-Nitrogen Ligases/metabolism , Combinatorial Chemistry Techniques , Enzyme Inhibitors/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Weight , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL