Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur Radiol ; 25(6): 1742-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25599933

ABSTRACT

OBJECTIVE: To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. METHODS: Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. RESULTS: Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CONCLUSION: CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. KEY POINTS: • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.


Subject(s)
Connective Tissue/diagnostic imaging , Musculoskeletal System/diagnostic imaging , Adipose Tissue/diagnostic imaging , Attitude of Health Personnel , Bone and Bones/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Cone-Beam Computed Tomography/standards , Consumer Behavior , Hand , Humans , Knee Joint , Ligaments/diagnostic imaging , Multidetector Computed Tomography/standards , Muscle, Skeletal/diagnostic imaging , Observer Variation , Phantoms, Imaging , Radiology
2.
Proc SPIE Int Soc Opt Eng ; 101372017 Feb 11.
Article in English | MEDLINE | ID: mdl-28638170

ABSTRACT

PURPOSE: Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce user-dependence of the metrics arising from manual identification of the anatomical landmarks. METHODS: The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). RESULTS: Intra-reader variability as high as ~10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. CONCLUSIONS: The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

3.
Proc SPIE Int Soc Opt Eng ; 94122015 Feb 21.
Article in English | MEDLINE | ID: mdl-26045631

ABSTRACT

PURPOSE: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. METHODS: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. RESULTS: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix (emulating normal trabecular bone with significant fraction of yellow marrow). CONCLUSION: Detection of BME and quantification of water and fat content were achieved in extremities DE CBCT with a longitudinal configuration of sources providing DE imaging in a single gantry rotation. The findings support the development of DE imaging capability for CBCT of the extremities in areas conventionally in the domain of MRI.

4.
Proc SPIE Int Soc Opt Eng ; 9033: 903329, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-25076825

ABSTRACT

PURPOSE: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. METHODS: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. RESULTS: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5·106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. CONCLUSION: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

5.
AJNR Am J Neuroradiol ; 34(3): 486-97, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22976233

ABSTRACT

With advancement in 3D imaging, better fat-suppression techniques, and superior coil designs for MR imaging and the increasing availability and use of 3T magnets, the visualization of the complexity of the brachial plexus has become facile. The relevant imaging findings are described for normal and pathologic conditions of the brachial plexus. These radiologic findings are supported by clinical and/or EMG/surgical data, and corresponding high-resolution MR neurography images are illustrated. Because the brachial plexus can be affected by a plethora of pathologies, resulting in often serious and disabling complications, a better radiologic insight has great potential in aiding physicians in rendering superior services to patients.


Subject(s)
Brachial Plexus Neuropathies/pathology , Brachial Plexus/pathology , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
6.
AJNR Am J Neuroradiol ; 34(4): 802-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23124644

ABSTRACT

BACKGROUND AND PURPOSE: A number of benign and malignant peripheral nerve tumor and tumorlike conditions produce similar imaging features on conventional anatomic MR imaging. Functional MR imaging using DTI can increment the diagnostic performance in differentiation of these lesions. Our aim was to evaluate the role of 3T anatomic MR imaging and DTI in the characterization of peripheral nerve tumor and tumorlike conditions. MATERIALS AND METHODS: Twenty-nine patients (13 men, 16 women; mean age, 41±18 years; range, 11-83 years) with a nerve tumor or tumorlike condition (25 benign, 5 malignant) underwent 3T MR imaging by using anatomic (n=29), functional diffusion, DWI (n=21), and DTI (n=24) techniques. Images were evaluated for image quality (3-point scale), ADC of the lesion, tractography, and fractional anisotropy of nerves with interobserver reliability in ADC and FA measurements. RESULTS: No significant differences were observed in age (benign, 40±18 versus malignant, 45±19 years) and sex (benign, male/female=12:12 versus malignant, male/female=3:2) (P>.05). All anatomic (29/29, 100%) MR imaging studies received "good" quality; 20/21 (95%) DWI and 21/24 (79%) DTI studies received "good" quality. ADC of benign lesions (1.848±0.40×10(-3) mm2/s) differed from that of malignant lesions (0.900±0.25×10(-3) mm2/s, P<.001) with excellent interobserver reliability (ICC=0.988 [95% CI, 0.976-0.994]). There were no FA or ADC differences between men and women (P>.05). FA of involved nerves was lower than that in contralateral healthy nerves (P<.001) with excellent interobserver reliability (ICC=0.970 [95% CI, 0.946-0.991]). ADC on DTI and DWI was not statistically different (P>.05), with excellent intermethod reliability (ICC=0.943 [95% CI, 0.836-0.980]). Tractography differences were observed in benign and malignant lesions. CONCLUSIONS: 3T MR imaging and DTI are valuable methods for anatomic and functional evaluation of peripheral nerve lesions with excellent interobserver reliability. While tractography and low FA provide insight into neural integrity, low diffusivity values indicate malignancy in neural masses.


Subject(s)
Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Nerve Sheath Neoplasms/pathology , Neurilemmoma/pathology , Peripheral Nervous System Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Charcot-Marie-Tooth Disease/pathology , Child , Diffusion Tensor Imaging/standards , Diffusion Tensor Imaging/statistics & numerical data , Female , Follow-Up Studies , Humans , Lymphoma/pathology , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/statistics & numerical data , Male , Middle Aged , Neoplasms/pathology , Neurofibromatosis 1/pathology , Observer Variation , Young Adult
7.
Proc SPIE Int Soc Opt Eng ; 8672: 867203, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-25076823

ABSTRACT

PURPOSE: We describe the initial assessment of the peripheral quantitative CT (pQCT) imaging capabilities of a cone-beam CT (CBCT) scanner dedicated to musculoskeletal extremity imaging. The aim is to accurately measure and quantify bone and joint morphology using information automatically acquired with each CBCT scan, thereby reducing the need for a separate pQCT exam. METHODS: A prototype CBCT scanner providing isotropic, sub-millimeter spatial resolution and soft-tissue contrast resolution comparable or superior to standard multi-detector CT (MDCT) has been developed for extremity imaging, including the capability for weight-bearing exams and multi-mode (radiography, fluoroscopy, and volumetric) imaging. Assessment of pQCT performance included measurement of bone mineral density (BMD), morphometric parameters of subchondral bone architecture, and joint space analysis. Measurements employed phantoms, cadavers, and patients from an ongoing pilot study imaged with the CBCT prototype (at various acquisition, calibration, and reconstruction techniques) in comparison to MDCT (using pQCT protocols for analysis of BMD) and micro-CT (for analysis of subchondral morphometry). RESULTS: The CBCT extremity scanner yielded BMD measurement within ±2-3% error in both phantom studies and cadaver extremity specimens. Subchondral bone architecture (bone volume fraction, trabecular thickness, degree of anisotropy, and structure model index) exhibited good correlation with gold standard micro-CT (error ~5%), surpassing the conventional limitations of spatial resolution in clinical MDCT scanners. Joint space analysis demonstrated the potential for sensitive 3D joint space mapping beyond that of qualitative radiographic scores in application to non-weight-bearing versus weight-bearing lower extremities and assessment of phalangeal joint space integrity in the upper extremities. CONCLUSION: The CBCT extremity scanner demonstrated promising initial results in accurate pQCT analysis from images acquired with each CBCT scan. Future studies will include improved x-ray scatter correction and image reconstruction techniques to further improve accuracy and to correlate pQCT metrics with known pathology.

8.
Med Phys ; 39(6Part28): 3973, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519605

ABSTRACT

PURPOSE: To assess the diagnostic performance of a prototype cone-beam CT (CBCT) scanner developed for musculoskeletal extremity imaging. Studies involved controlled observer studies conducted subsequent to rigorous technical assessment as well as patient images from the first clinical trial in imaging the hand and knee. METHODS: Performance assessment included: 1.) rigorous technical assessment; 2.) controlled observer studies using CBCT images of cadaveric specimens; and 3.) first clinical images. Technical assessment included measurement of spatial resolution (MTF), constrast, and noise (SDNR) versus kVp and dose using standard CT phantoms. Diagnostic performance in comparison to multi- detector CT (MDCT) was assessed in controlled observer studies involving 12 cadaveric hands and knees scanned with and without abnormality (fracture). Observer studies involved five radiologists rating pertinent diagnostics tasks in 9-point preference and 10-point diagnostic satisfaction scales. Finally, the first clinical images from an ongoing pilot study were assessed in terms of diagnostic utility in disease assessment and overall workflow in patient setup. RESULTS: Quantitative assessment demonstrated sub-mm spatial resolution (MTF exceeding 10% out to 15-20 cm-1) and SDNR sufficient for relevant soft-tissue visualization tasks at dose <10 mGy. Observer studies confirmed optimal acquisition techniques and demonstrated superior utility of combined soft-tissue visualization and isotropic spatial resolution in diagnostic tasks. Images from the patient trial demonstrate exquisite contrast and detail and the ability to detect tissue impingement in weight-bearing exams. CONCLUSIONS: The prototype CBCT scanner provides isotropic spatial resolution superior to standard-protocol MDCT with soft-tissue visibility sufficient for a broad range of diagnostic tasks in musculoskeletal radiology. Dosimetry and workflow were advantageous in comparison to whole-body MDCT. Multi-mode and weight-bearing capabilities add valuable functionality. An ongoing clinical study further assesses diagnostic utility and defines the role of such technology in the diagnostic arsenal. - Research Grant, Carestream Health - Research Grant, National Institutes of Health 2R01-CA-112163.

9.
AJNR Am J Neuroradiol ; 33(2): 203-10, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21527571

ABSTRACT

High-resolution MRN is becoming increasingly available due to recent technical advancements, including higher magnetic field strengths (eg, 3T), 3D image acquisition, evolution of novel fat-suppression methods, and improved coil design. This review describes the MRN techniques for obtaining high-quality images of the peripheral nerves and their small branches and imaging findings in normal as well as injured nerves with relevant intraoperative correlations. Various microsurgical techniques in peripheral nerves, such as neurolysis, nerve repairs by using nerve grafts, and conduits are discussed, and MRN findings of surgically treated nerves are demonstrated.


Subject(s)
Peripheral Nerves/diagnostic imaging , Peripheral Nerves/surgery , Humans , Magnetic Resonance Imaging , Neuroradiography/methods , Neurosurgical Procedures/methods
10.
AJNR Am J Neuroradiol ; 32(8): 1365-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20966057

ABSTRACT

High-resolution MR imaging of peripheral nerves is becoming more common and practical with the increasing availability of 3T magnets. There are multiple reports of MR imaging of peripheral nerves in compression and entrapment neuropathies. However, there is a relative paucity of literature on MRN appearance of diffuse peripheral nerve lesions. We attempted to highlight the salient imaging features of myriad diffuse peripheral nerve disorders and imaging techniques for MRN. Using clinical and pathologically proved relevant examples, we present the MRN appearance of various types of diffuse peripheral nerve lesions, such as traumatic, inflammatory, infectious, hereditary, radiation-induced, neoplastic, and tumor variants.


Subject(s)
Magnetic Resonance Imaging , Peripheral Nervous System Diseases/pathology , Humans , Magnetic Resonance Imaging/methods , Peripheral Nervous System Diseases/etiology
SELECTION OF CITATIONS
SEARCH DETAIL