Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 150(2): 132-150, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38557054

ABSTRACT

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.


Subject(s)
Hypertension, Pulmonary , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Humans , Male , Mice , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , PPAR gamma/metabolism , PPAR gamma/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Signal Transduction , Ubiquitination , Vascular Remodeling
2.
Circ Res ; 131(10): 828-841, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36252121

ABSTRACT

BACKGROUND: Dysregulated BMP (bone morphogenetic protein) or TGF-ß (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-ß axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-ß axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-ß receptor 2) and their involvement in the PH. METHODS: High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS: Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS: A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-ß signaling is implicated in the disease progression of PAH in humans and PH in rodent models.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Mice , Animals , Hypertension, Pulmonary/metabolism , Transforming Growth Factor beta/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Endothelial Cells/metabolism , Epigenesis, Genetic , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Pulmonary Artery/metabolism , Bone Morphogenetic Proteins/genetics , Pulmonary Arterial Hypertension/genetics , Endothelium, Vascular/metabolism , Transcription Factors/metabolism , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism
3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892440

ABSTRACT

NOTCH3 receptor signaling has been linked to the regulation of smooth muscle cell proliferation and the maintenance of smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (World Health Organization Group 1 idiopathic disease: PAH) is a fatal disease characterized clinically by elevated pulmonary vascular resistance caused by extensive vascular smooth muscle cell proliferation, perivascular inflammation, and asymmetric neointimal hyperplasia in precapillary pulmonary arteries. In this review, a detailed overview of the specific role of NOTCH3 signaling in PAH, including its mechanisms of activation by a select ligand, downstream signaling effectors, and physiologic effects within the pulmonary vascular tree, is provided. Animal models showing the importance of the NOTCH3 pathway in clinical PAH will be discussed. New drugs and biologics that inhibit NOTCH3 signaling and reverse this deadly disease are highlighted.


Subject(s)
Pulmonary Arterial Hypertension , Receptor, Notch3 , Signal Transduction , Humans , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Animals , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
4.
Am J Physiol Cell Physiol ; 323(4): C959-C973, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35968892

ABSTRACT

Mechanosensitive cation channels and Ca2+ influx through these channels play an important role in the regulation of endothelial cell functions. Transient receptor potential canonical channel 6 (TRPC6) is a diacylglycerol-sensitive nonselective cation channel that forms receptor-operated Ca2+ channels in a variety of cell types. Piezo1 is a mechanosensitive cation channel activated by membrane stretch and shear stress in lung endothelial cells. In this study, we report that TRPC6 and Piezo1 channels both contribute to membrane stretch-mediated cation currents and Ca2+ influx or increase in cytosolic-free Ca2+ concentration ([Ca2+]cyt) in human pulmonary arterial endothelial cells (PAECs). The membrane stretch-mediated cation currents and increase in [Ca2+]cyt in human PAECs were significantly decreased by GsMTX4, a blocker of Piezo1 channels, and by BI-749327, a selective blocker of TRPC6 channels. Extracellular application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane permeable analog of diacylglycerol, rapidly induced whole cell cation currents and increased [Ca2+]cyt in human PAECs and human embryonic kidney (HEK)-cells transiently transfected with the human TRPC6 gene. Furthermore, membrane stretch with hypo-osmotic or hypotonic solution enhances the cation currents in TRPC6-transfected HEK cells. In HEK cells transfected with the Piezo1 gene, however, OAG had little effect on the cation currents, but membrane stretch significantly enhanced the cation currents. These data indicate that, while both TRPC6 and Piezo1 are involved in generating mechanosensitive cation currents and increases in [Ca2+]cyt in human PAECs undergoing mechanical stimulation, only TRPC6 (but not Piezo1) is sensitive to the second messenger diacylglycerol. Selective blockers of these channels may help develop novel therapies for mechanotransduction-associated pulmonary vascular remodeling in patients with pulmonary arterial hypertension.


Subject(s)
Endothelial Cells , Ion Channels , Mechanoreceptors , TRPC6 Cation Channel , Calcium/metabolism , Cations/metabolism , Diglycerides/metabolism , Diglycerides/pharmacology , Endothelial Cells/metabolism , Humans , Hypotonic Solutions/metabolism , Hypotonic Solutions/pharmacology , Ion Channels/genetics , Ion Channels/metabolism , Mechanoreceptors/metabolism , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
5.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L737-L760, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35318857

ABSTRACT

Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.


Subject(s)
Hypertension, Pulmonary , Membrane Proteins/metabolism , Pulmonary Artery , Animals , Calcium Signaling/physiology , Cell Proliferation , Cells, Cultured , Humans , Hypertension, Pulmonary/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Rats , Vascular Remodeling
6.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34669509

ABSTRACT

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Ion Channels/biosynthesis , Mechanotransduction, Cellular/physiology , Pulmonary Artery/metabolism , Up-Regulation/physiology , Adult , Aged , Animals , Cells, Cultured , Endothelial Cells/drug effects , Female , Humans , Hypertension, Pulmonary/pathology , Indoles/pharmacology , Male , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Middle Aged , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
7.
Circulation ; 142(12): 1190-1204, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32755395

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1-7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)-protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. METHODS: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. RESULTS: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell-specific AMPKα2 knockout mitigated PH. CONCLUSIONS: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Pulmonary Arterial Hypertension/pathology , Ubiquitination , AMP-Activated Protein Kinases/deficiency , AMP-Activated Protein Kinases/genetics , Angiotensin-Converting Enzyme 2 , Animals , Disease Susceptibility , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptidyl-Dipeptidase A/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats
8.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1161-L1182, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34704831

ABSTRACT

Idiopathic pulmonary arterial hypertension (PAH) is a fatal and progressive disease. Sustained vasoconstriction due to pulmonary arterial smooth muscle cell (PASMC) contraction and concentric arterial remodeling due partially to PASMC proliferation are the major causes for increased pulmonary vascular resistance and increased pulmonary arterial pressure in patients with precapillary pulmonary hypertension (PH) including PAH and PH due to respiratory diseases or hypoxemia. We and others observed upregulation of TRPC6 channels in PASMCs from patients with PAH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC triggers PASMC contraction and vasoconstriction, while Ca2+-dependent activation of PI3K/AKT/mTOR pathway is a pivotal signaling cascade for cell proliferation and gene expression. Despite evidence supporting a pathological role of TRPC6, no selective and orally bioavailable TRPC6 antagonist has yet been developed and tested for treatment of PAH or PH. In this study, we sought to investigate whether block of receptor-operated Ca2+ channels using a nonselective blocker of cation channels, 2-aminoethyl diphenylborinate (2-APB, administered intraperitoneally) and a selective blocker of TRPC6, BI-749327 (administered orally) can reverse established PH in mice. The results from the study show that intrapulmonary application of 2-APB (40 µM) or BI-749327 (3-10 µM) significantly and reversibly inhibited acute alveolar hypoxia-induced pulmonary vasoconstriction. Intraperitoneal injection of 2-APB (1 mg/kg per day) significantly attenuated the development of PH and partially reversed established PH in mice. Oral gavage of BI-749327 (30 mg/kg, every day, for 2 wk) reversed established PH by ∼50% via regression of pulmonary vascular remodeling. Furthermore, 2-APB and BI-749327 both significantly inhibited PDGF- and serum-mediated phosphorylation of AKT and mTOR in PASMC. In summary, the receptor-operated and mechanosensitive TRPC6 channel is a good target for developing novel treatment for PAH/PH. BI-749327, a selective TRPC6 blocker, is potentially a novel and effective drug for treating PAH and PH due to respiratory diseases or hypoxemia.


Subject(s)
Gene Expression Regulation/drug effects , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/pathology , Pulmonary Artery/pathology , TRPC6 Cation Channel/metabolism , Vasoconstriction , Animals , Boron Compounds/pharmacology , Calcium Signaling , Cells, Cultured , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Mice , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics
9.
Am J Physiol Cell Physiol ; 318(5): C954-C968, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32186932

ABSTRACT

The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.


Subject(s)
Kv1.2 Potassium Channel/genetics , Kv1.5 Potassium Channel/genetics , Pulmonary Arterial Hypertension/genetics , Receptors, Calcium-Sensing/genetics , Stromal Interaction Molecule 2/genetics , Calcium Channels/drug effects , Calcium Channels/genetics , Calcium Signaling/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Estrenes/pharmacology , HEK293 Cells , Humans , Indoles/pharmacology , Jagged-1 Protein/genetics , Membrane Potentials/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pyrrolidinones/pharmacology , Receptors, Calcium-Sensing/drug effects , Receptors, Notch/genetics , Single-Cell Analysis
10.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L10-L26, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31553627

ABSTRACT

Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel ß1 subunit (BKCaß1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaß1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.


Subject(s)
Down-Regulation/genetics , Familial Primary Pulmonary Hypertension/genetics , MicroRNAs/genetics , Potassium Channels, Voltage-Gated/genetics , Adolescent , Adult , Cells, Cultured , Familial Primary Pulmonary Hypertension/metabolism , Female , Humans , Male , Membrane Potentials/genetics , Middle Aged , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , RNA, Messenger/genetics , Up-Regulation/genetics , Vasoconstriction/genetics , Young Adult
11.
Am J Respir Crit Care Med ; 198(4): 509-520, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29570986

ABSTRACT

RATIONALE: Endothelial dysfunction plays an integral role in pulmonary hypertension (PH). AMPK (AMP-activated protein kinase) and ACE2 (angiotensin-converting enzyme 2) are crucial in endothelial homeostasis. The mechanism by which AMPK regulates ACE2 in the pulmonary endothelium and its protective role in PH remain elusive. OBJECTIVES: We investigated the role of AMPK phosphorylation of ACE2 Ser680 in ACE2 stability and deciphered the functional consequences of this post-translational modification of ACE2 in endothelial homeostasis and PH. METHODS: Bioinformatics prediction, kinase assay, and antibody against phospho-ACE2 Ser680 (p-ACE2 S680) were used to investigate AMPK phosphorylation of ACE2 Ser680 in endothelial cells. Using CRISPR-Cas9 genomic editing, we created gain-of-function ACE2 S680D knock-in and loss-of-function ACE2 knockout (ACE2-/-) mouse lines to address the involvement of p-ACE2 S680 and ACE2 in PH. The AMPK-p-ACE2 S680 axis was also validated in lung tissue from humans with idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS: Phosphorylation of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang (angiotensin) 1-7 and endothelial nitric oxide synthase-derived NO bioavailability. ACE2 S680D knock-in mice were resistant to PH as compared with wild-type littermates. In contrast, ACE2-knockout mice exacerbated PH, a similar phenotype found in mice with endothelial cell-specific deletion of AMPKα2. Consistently, the concentrations of phosphorylated AMPK, p-ACE2 S680, and ACE2 were decreased in human lungs with idiopathic pulmonary arterial hypertension. CONCLUSIONS: Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Endothelium, Vascular/physiopathology , Hypertension, Pulmonary/physiopathology , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Endothelium, Vascular/enzymology , Humans , Hypertension, Pulmonary/enzymology , Lung/enzymology , Lung/physiopathology , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley
13.
Am J Respir Cell Mol Biol ; 53(3): 355-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25569851

ABSTRACT

Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.


Subject(s)
Calcium Signaling , Hypertension, Pulmonary/metabolism , Receptor, Notch1/metabolism , Vasoconstriction , Animals , Calcium-Binding Proteins/metabolism , Cell Hypoxia , Cells, Cultured , Humans , Hypertension, Pulmonary/physiopathology , Intercellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Serrate-Jagged Proteins , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , TRPC6 Cation Channel
14.
Circulation ; 130(14): 1179-91, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25062690

ABSTRACT

BACKGROUND: Pulmonary veno-occlusive disease is caused by excessive cell proliferation and fibrosis, which obliterate the lumen of pulmonary venules, leading to pulmonary hypertension, right ventricular failure, and death. This condition has no effective treatment and a 5-year survival of <5%. Understanding the mechanism of this disease and designing effective therapies are urgently needed. METHODS AND RESULTS: We show that mice with homozygous deletion of the Ets transcription factor Erg die between embryonic day 16.5 and 3 months of age as a result of pulmonary veno-occlusive disease, capillary hemorrhage, and pancytopenia. We demonstrate that Erg binds to and serves as a transcriptional activator of the G-protein-coupled receptor gene Aplnr, the expression of which is uniquely specific for venous endothelium and that knockout of either Erg or Aplnr results in pulmonary venule-specific endothelial proliferation in vitro. We show that mice with either homozygous-global or endothelium-directed deletion of Aplnr manifest pulmonary veno-occlusive disease and right heart failure, detectable at 8 months of age. Levels of pulmonary ERG and APLNR in patients with pulmonary veno-occlusive disease undergoing lung transplantation were significantly lower than those of control subjects. CONCLUSIONS: Our results suggest that ERG and APLNR are essential for endothelial homeostasis in venules in the lung and that perturbation in ERG-APLNR signaling is crucial for the development of pulmonary veno-occlusive disease. We identify this pathway as a potential therapeutic target for the treatment of this incurable disease.


Subject(s)
Oncogene Proteins/genetics , Pulmonary Veno-Occlusive Disease/pathology , Receptors, G-Protein-Coupled/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Animals , Apelin Receptors , Cell Proliferation , Cells, Cultured , Endothelial Cells/pathology , Female , Gene Expression/physiology , Humans , Lac Operon , Lung Transplantation , Male , Mice , Mice, Knockout , Oncogene Proteins/metabolism , Phenotype , Promoter Regions, Genetic/physiology , Pulmonary Artery/pathology , Pulmonary Veins/pathology , Pulmonary Veno-Occlusive Disease/surgery , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG
15.
Am J Physiol Cell Physiol ; 306(9): C871-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24573085

ABSTRACT

Notch signaling plays a critical role in controlling proliferation and differentiation of pulmonary arterial smooth muscle cells (PASMC). Upregulated Notch ligands and Notch3 receptors in PASMC have been reported to promote the development of pulmonary vascular remodeling in patients with pulmonary arterial hypertension (PAH) and in animals with experimental pulmonary hypertension. Activation of Notch receptors by their ligands leads to the cleavage of the Notch intracellular domain (NICD) to the cytosol by γ-secretase; NICD then translocates into the nucleus to regulate gene transcription. In this study, we examined whether short-term activation of Notch functionally regulates store-operated Ca(2+) entry (SOCE) in human PASMC. Treatment of PASMC with the active fragment of human Jagged-1 protein (Jag-1) for 15-60 min significantly increased the amplitude of SOCE induced by passive deletion of Ca(2+) from the intracellular stores, the sarcoplasmic reticulum (SR). The Jag-1-induced enhancement of SOCE was time dependent: the amplitude was maximized at 30 min of treatment with Jag-1, which was closely correlated with the time course of Jag-1-mediated increase in NICD protein level. The scrambled peptide of Jag-1 active fragment had no effect on SOCE. Inhibition of γ-secretase by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) significantly attenuated the Jag-1-induced augmentation of SOCE. In addition to the short-term effect, prolonged treatment of PASMC with Jag-1 for 48 h also markedly enhanced the amplitude of SOCE. These data demonstrate that short-term activation of Notch signaling enhances SOCE in PASMC; the NICD-mediated functional interaction with store-operated Ca(2+) channels (SOC) may be involved in the Jag-1-mediated enhancement of SOCE in human PASMC.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium Channels/drug effects , Calcium Signaling/drug effects , Calcium-Binding Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Membrane Proteins/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Peptide Fragments/pharmacology , Receptors, Notch/agonists , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Calcium Channels/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Jagged-1 Protein , Male , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Receptors, Notch/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Serrate-Jagged Proteins , Time Factors
16.
Nat Commun ; 15(1): 6282, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060233

ABSTRACT

Demyelination due to autoreactive T cells and inflammation in the central nervous system are principal features of multiple sclerosis (MS), a chronic and highly disabling human disease affecting brain and spinal cord. Here, we show that treatment with apelin, a secreted peptide ligand for the G protein-coupled receptor APJ/Aplnr, is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Apelin reduces immune cell entry into the brain, delays the onset and reduces the severity of EAE. Apelin affects the trafficking of leukocytes through the lung by modulating the expression of cell adhesion molecules that mediate leukocyte recruitment. In addition, apelin induces the internalization and desensitization of its receptor in endothelial cells (ECs). Accordingly, protection against EAE major outcomes of apelin treatment are phenocopied by loss of APJ/Aplnr function, achieved by EC-specific gene inactivation in mice or knockdown experiments in cultured primary endothelial cells. Our findings highlight the importance of the lung-brain axis in neuroinflammation and indicate that apelin targets the transendothelial migration of immune cells into the lung during acute inflammation.


Subject(s)
Apelin , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Leukocytes , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Animals , Apelin/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/immunology , Leukocytes/immunology , Leukocytes/metabolism , Female , Lung/immunology , Lung/pathology , Inflammation/metabolism , Inflammation/immunology , Apelin Receptors/metabolism , Apelin Receptors/genetics , Humans , Brain/metabolism , Brain/pathology , Brain/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Transendothelial and Transepithelial Migration/drug effects , Mice, Knockout , Disease Models, Animal
17.
J Thorac Cardiovasc Surg ; 165(2): 482-494.e1, 2023 02.
Article in English | MEDLINE | ID: mdl-35863965

ABSTRACT

OBJECTIVE: The study objective was to understand the impact of race/ethnicity on access to thoracic surgical care for patients undergoing lung resection for cancer. METHODS: We performed a retrospective analysis on 206 consecutive patients who underwent lung resection for cancer (120 female, 86 male; median age 66 years), with respect to how race and ethnicity impact time to referral for thoracic surgery to a major healthcare center. Time between initial radiographic appearance of a lung nodule/mass 1 cm or greater to surgical referral and time from surgical referral to operation were evaluated for 121 White, 30 Asian, 26 Hispanic, 12 African American, and 17 mixed or other race patients. The impact of age, sex, median income of patient's household, national and state Area Deprivation Indices, insurance type, and distance between the patient's domicile and our hospital was evaluated. The influence of the referring physician's practice (hospital-based, hospital-affiliated, or private), internal or external referral, race/ethnicity, and level of specialization was also studied. RESULTS: African American, Asian, Hispanic, and mixed/other race patients had significantly longer wait times between initial radiographic finding of a lung nodule/mass 1 cm or greater and surgical referral compared with White individuals (median days: African American, 78; Asian, 95; Hispanic, 92; mixed or other, 65; White, 35). Multiple linear regression analysis demonstrated that race/ethnicity was the only significant predictor of prolonged time to surgical referral when adjusted for age, sex, median household income level, national and state Area Deprivation Indices, insurance type, and distance between patient's home and our hospital. The referring physician's type of practice and internal versus external referral were not significant. However, the physician's race/ethnicity and level of specialization had an impact on referral times, with nonspecialists referring patients sooner to thoracic surgery compared with specialists who ordered more workup tests. For all patient races/ethnicities, there was no difference in time between surgical referral and day of operation. CONCLUSIONS: Race and ethnicity have a major impact on the time from initial radiographic appearance of a lung nodule/mass 1 cm or greater to referral for surgical resection for cancer. This study suggests the need to develop strategies to reduce minority wait times and improve timely access to surgery for patients with thoracic malignancies. VIDEO ABSTRACT: Discussion of how race and ethnicity impact referral time to thoracic surgery discussed by Dr Moises Hernandez.


Subject(s)
Thoracic Surgery , White People , Humans , Male , Female , United States , Aged , Retrospective Studies , Ethnicity , Referral and Consultation
19.
Methods Mol Biol ; 2472: 209-220, 2022.
Article in English | MEDLINE | ID: mdl-35674903

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe disease characterized by sustained vasoconstriction, concentric wall thickening and vascular remodeling leading to increased pulmonary vascular resistance, causing right heart failure and death. Acute alveolar hypoxia causes pulmonary vasoconstriction, while sustained hypoxia causes pulmonary hypertension (PH). Activation of Notch signaling is implicated in the development of PAH and chronic hypoxia induced PH via partially its enhancing effect on Ca2+ signaling in pulmonary arterial smooth muscle cells (PASMCs). Pharmacological experiments and genetic approach using animal models of experimental PH (e.g., chronic hypoxia-induced PH) have been routinely utilized to study pathogenic mechanisms of PAH/PH and identify novel therapeutic targets. In this chapter, we describe protocols to investigate the role of Notch by measuring pulmonary hemodynamics in vivo and pulmonary arterial pressure ex vivo in mouse models of experimental PH. Using these experimental protocols, one can study the role of Notch or Notch signaling pathway in the pathogenic mechanisms of pulmonary vascular disease and develop novel therapies by targeting Notch ligands and receptors.


Subject(s)
Hypertension, Pulmonary , Muscle, Smooth, Vascular , Animals , Cell Proliferation , Cells, Cultured , Hypoxia/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery , Vascular Remodeling
20.
Sci Transl Med ; 14(643): eabl5471, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507674

ABSTRACT

Within the pulmonary arterial tree, the NOTCH3 pathway is crucial in controlling vascular smooth muscle cell proliferation and maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (PAH) is a fatal disease without cure, characterized by elevated pulmonary vascular resistance due to vascular smooth muscle cell proliferation in precapillary arteries, perivascular inflammation, and asymmetric neointimal hyperplasia. Here, we show that human PAH is characterized by overexpression of the NOTCH ligand JAGGED-1 (JAG-1) in small pulmonary artery smooth muscle cells and that JAG-1 selectively controls NOTCH3 signaling and cellular proliferation in an autocrine fashion. In contrast, the NOTCH ligand DELTA-LIKE 4 is minimally expressed in small pulmonary artery smooth muscle cells from individuals with PAH, inhibits NOTCH3 cleavage and signaling, and retards vascular smooth muscle cell proliferation. A new monoclonal antibody for the treatment of PAH, which blocks JAG-1 cis- and trans-induced cleavage of the NOTCH3 receptor in the pulmonary vasculature, was developed. Inhibition of JAG-1-induced NOTCH3 signaling in the lung reverses clinical and pathologic pulmonary hypertension in two rodent models of disease, without toxic side effects associated with nonspecific NOTCH inhibitors. Our data suggest opposing roles of NOTCH ligands in the pulmonary vasculature in pulmonary hypertension. We propose that selectively targeting JAG-1 activation of NOTCH3 may be an effective, safe strategy to treat PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/metabolism , Ligands , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/pathology , Receptor, Notch3/metabolism , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL