Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biometals ; 32(6): 829-843, 2019 12.
Article in English | MEDLINE | ID: mdl-31541377

ABSTRACT

Manganese (Mn) is an essential element necessary for proper development and brain function. Circulating Mn levels are regulated by hepatobiliary clearance to limit toxic levels and prevent tissue deposition. To characterize mechanisms involved in hepatocyte Mn uptake, polarized human HepaRG cells were used for this study. Western blot analysis and immunofluorescence microscopy showed the Mn transporter ZIP14 was expressed and localized to the basolateral surface of polarized HepaRG cells. HepaRG cells took up 54Mn in a time- and temperature-dependent manner but uptake was reduced after exposure to Mn. This loss in transport activity was associated with decreased ZIP14 protein levels in response to Mn exposure. Mn-induced degradation of ZIP14 was blocked by bafilomycin A1, which increased localization of the transporter in Lamp1-positive vesicles. Mn exposure also down-regulated the Golgi proteins TMEM165 and GPP130 while the ER stress marker BiP was induced. These results indicate that Mn exposure decreases ZIP14 protein levels to limit subsequent uptake of Mn as a cytoprotective response. Thus, high levels of Mn may compromise first-pass-hepatic clearance mechanisms.


Subject(s)
Cation Transport Proteins/metabolism , Manganese/pharmacology , Proteolysis/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Temperature
2.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G351-G363, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29792530

ABSTRACT

Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 µM MnCl2. However, the hepatocytes were resistant to 4-h exposures of up to 500 µM MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.


Subject(s)
Biological Transport/physiology , Brefeldin A , Cation Transport Proteins/metabolism , Hepatocytes , Hepcidins , Manganese , Animals , Brefeldin A/metabolism , Brefeldin A/pharmacology , Cell Line , Cell Membrane/metabolism , Cell Polarity , Cytoplasmic Vesicles/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepcidins/metabolism , Hepcidins/pharmacology , Humans , Manganese/metabolism , Manganese/toxicity , Protein Synthesis Inhibitors/pharmacology
3.
PLoS One ; 10(5): e0126926, 2015.
Article in English | MEDLINE | ID: mdl-26010737

ABSTRACT

BACKGROUND: Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. METHODS AND FINDINGS: Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. CONCLUSIONS: These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation-inducing environmental agents.


Subject(s)
Chemokines/blood , Environmental Exposure/analysis , Fungi/physiology , Mycotoxins/toxicity , Adult , Area Under Curve , Biomarkers/blood , Demography , Female , Fungi/drug effects , Humans , Ionomycin/toxicity , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Trichothecenes/toxicity
4.
PLoS One ; 7(3): e33533, 2012.
Article in English | MEDLINE | ID: mdl-22479410

ABSTRACT

Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2) for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2). Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D(1) (D1R) levels were reduced and dopamine receptor D(2) (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.


Subject(s)
Iron Deficiencies , Manganese/metabolism , Motor Activity/physiology , Olfactory Bulb/metabolism , Administration, Intranasal , Animals , Brain/metabolism , Brain/pathology , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Instillation, Drug , Iron/metabolism , Iron, Dietary , Magnetic Resonance Imaging , Manganese/administration & dosage , Rats , Rats, Sprague-Dawley , Receptors, Dopamine/metabolism
5.
Toxicol Sci ; 120(1): 163-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21177252

ABSTRACT

Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type-specific manner over the course of 6-8 weeks postinjury. We instilled (54)MnCl(2) intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. (54)MnCl(2) was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. (54)Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue (54)Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain (54)Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain.


Subject(s)
Brain/metabolism , Chlorides/pharmacokinetics , Hydrocarbons, Brominated , Manganese Compounds/pharmacokinetics , Olfactory Mucosa/metabolism , Administration, Intranasal , Aging/blood , Aging/metabolism , Animals , Chlorides/administration & dosage , Chlorides/blood , Hydrocarbons, Brominated/toxicity , Injections, Intravenous , Male , Manganese Compounds/administration & dosage , Manganese Compounds/blood , Olfactory Mucosa/drug effects , Olfactory Mucosa/pathology , Olfactory Mucosa/physiology , Rats , Rats, Sprague-Dawley , Regeneration/physiology , Tissue Distribution
6.
Am J Physiol Lung Cell Mol Physiol ; 290(6): L1247-59, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16428268

ABSTRACT

Pathways mediating pulmonary metal uptake remain unknown. Because absorption of iron and manganese could involve similar mechanisms, transferrin (Tf) and transferrin receptor (TfR) expression in rat lungs was examined. Tf mRNA was detected in bronchial epithelium, type II alveolar cells, macrophages, and bronchus-associated lymphoid tissue (BALT). Tf protein levels in lung and bronchoalveolar lavage fluid did not change in iron deficiency despite increased plasma levels, suggesting that lung Tf concentrations are regulated by local synthesis in a manner independent of body iron status. Iron oxide exposure upregulated Tf mRNA in bronchial and alveolar epithelium, macrophages, and BALT, but protein was not significantly increased. In contrast, TfR mRNA and protein were both upregulated by iron deficiency. To examine potential interactions with lung Tf, rats were intratracheally instilled with (54)Mn or (59)Fe. Unlike (59)Fe, interactions between (54)Mn and Tf in lung fluid were not detected. Absorption of intratracheally instilled (54)Mn from the lungs to the blood was unimpaired in Belgrade rats homozygous for the functionally defective G185R allele of divalent metal transporter-1, indicating that this transporter is also not involved in pulmonary manganese absorption. Pharmacological studies of (54)Mn uptake by A549 cells suggest that metal uptake by type II alveolar epithelial cells is associated with activities of both L-type Ca(2+) channels and TRPM7, a member of the transient receptor potential melastatin subfamily. These results demonstrate that iron and manganese are absorbed by the pulmonary epithelium through different pathways and reveal the potential role for nonselective calcium channels in lung metal clearance.


Subject(s)
Iron/metabolism , Lung/physiology , Manganese/metabolism , Respiratory Mucosa/physiology , Animals , Base Sequence , Biological Transport , DNA Primers , In Situ Hybridization , Lung/cytology , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, Transferrin/genetics , Respiratory Mucosa/cytology , Transferrin/genetics
7.
J Cell Sci ; 115(Pt 10): 2165-77, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11973357

ABSTRACT

Ferritin is traditionally considered a cytoplasmic iron-storage protein, but recent reports indicate that it is also found in cell nuclei. Nuclear ferritin has been proposed to be involved in both the protection of DNA and the exacerbation of iron-induced oxidative damage to DNA. We demonstrate that H-rich ferritin is present in the nucleus of human astrocytoma tumor cells. To study the mechanism and regulation of ferritin translocation to the nucleus, we developed a cell culture model using SW1088 human astrocytoma cells. Changes in cellular iron levels, cytokine treatments and hydrogen peroxide exposure affected the distribution of ferritin between the cytosol and the nucleus. Ferritin enters the nucleus via active transport through the nuclear pore and does not require NLS-bearing cytosolic factors for transport. Furthermore, H-rich ferritin is preferred over L-rich ferritin for uptake into the nucleus. Whole cell crosslinking studies revealed that ferritin is associated with DNA. Ferritin protected DNA from iron-induced oxidative damage in both in vitro and in cell culture models. These results strongly suggest a novel role for ferritin in nuclear protection. This work should lead to novel characterization of ferritin functions in the context of genomic stability and may have unparalleled biological significance in terms of the accessibility of metals to DNA. The knowledge generated as a result of these studies will also improve our understanding of iron-induced damage of nuclear constituents.


Subject(s)
Cell Nucleus/metabolism , Ferritins/metabolism , Active Transport, Cell Nucleus/drug effects , Astrocytoma/metabolism , Astrocytoma/pathology , Cell Nucleus/drug effects , Cytokines/pharmacology , DNA/metabolism , DNA Damage , Humans , Hydrogen Peroxide/pharmacology , Iron/metabolism , Iron/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL