Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
bioRxiv ; 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36711771

ABSTRACT

Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human feces to uncover simple assembly rules and develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Community membership was largely determined by the donor feces, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient, due to the ability of fast-growing organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that community assembly follows simple rules of nutrient utilization dynamics and provides a predictive framework for manipulating gut commensal communities through nutritional perturbations.

2.
Cell Host Microbe ; 30(2): 260-272.e5, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35051349

ABSTRACT

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria , Bacteroides , Feces/microbiology , Humans , Mice
3.
Elife ; 92020 01 29.
Article in English | MEDLINE | ID: mdl-31995029

ABSTRACT

Predicting antibiotic efficacy within microbial communities remains highly challenging. Interspecies interactions can impact antibiotic activity through many mechanisms, including alterations to bacterial physiology. Here, we studied synthetic communities constructed from the core members of the fruit fly gut microbiota. Co-culturing of Lactobacillus plantarum with Acetobacter species altered its tolerance to the transcriptional inhibitor rifampin. By measuring key metabolites and environmental pH, we determined that Acetobacter species counter the acidification driven by L. plantarum production of lactate. Shifts in pH were sufficient to modulate L. plantarum tolerance to rifampin and the translational inhibitor erythromycin. A reduction in lag time exiting stationary phase was linked to L. plantarum tolerance to rifampicin, opposite to a previously identified mode of tolerance to ampicillin in E. coli. This mechanistic understanding of the coupling among interspecies interactions, environmental pH, and antibiotic tolerance enables future predictions of growth and the effects of antibiotics in more complex communities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Hydrogen-Ion Concentration , Bacteria/classification , Drug Resistance, Bacterial , Microbiota/drug effects , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL