Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Res ; 249: 118459, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38346482

ABSTRACT

OBJECTIVES: New epidemiologic approaches are needed to reduce the scientific uncertainty surrounding the association between extremely low frequency magnetic fields (ELF-MF) and childhood leukemia. While most previous studies focused on power lines, the Transformer Exposure study sought to assess this association using a multi-country study of children who had lived in buildings with built-in electrical transformers. ELF-MF in apartments above built-in transformers can be 5 times higher than in other apartments in the same building. This novel study design aimed to maximize the inclusion of highly exposed children while minimising the potential for selection bias. METHODS: We assessed associations between residential proximity to transformers and risk of childhood leukemia using registry based matched case-control data collected in five countries. Exposure was based on the location of the subject's apartment relative to the transformer, coded as high (above or adjacent to transformer), intermediate (same floor as apartments in high category), or unexposed (other apartments). Relative risk (RR) for childhood leukemia was estimated using conditional logistic and mixed logistic regression with a random effect for case-control set. RESULTS: Data pooling across countries yielded 16 intermediate and 3 highly exposed cases. RRs were 1.0 (95% CI: 0.5, 1.9) for intermediate and 1.1 (95% CI: 0.3, 3.8) for high exposure in the conditional logistic model. In the mixed logistic model, RRs were 1.4 (95% CI: 0.8, 2.5) for intermediate and 1.3 (95% CI: 0.4, 4.4) for high. Data of the most influential country showed RRs of 1.1 (95% CI: 0.5, 2.4) and 1.7 (95% CI: 0.4, 7.2) for intermediate (8 cases) and high (2 cases) exposure. DISCUSSION: Overall, evidence for an elevated risk was weak. However, small numbers and wide confidence intervals preclude strong conclusions and a risk of the magnitude observed in power line studies cannot be excluded.


Subject(s)
Environmental Exposure , Housing , Leukemia , Humans , Child , Child, Preschool , Leukemia/epidemiology , Leukemia/etiology , Case-Control Studies , Male , Female , Infant , Electric Power Supplies/adverse effects , Adolescent , Magnetic Fields/adverse effects
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769173

ABSTRACT

In the human environment, the increasing exposure to radiofrequency (RF) radiation, especially that emitted by wireless devices, could be absorbed in the body. Recently, mobile and emerging wireless technologies (UMTS, DECT, LTE, and Wi-Fi) have been using higher frequencies than 2G GSM systems (900/1800 MHz), which means that most of the circulating RF currents are absorbed into the skin and the superficial soft tissue. The harmful genotoxic, cytotoxic, and mutagenic effects of solar ultraviolet (UV) radiation on the skin are well-known. This study aimed at investigating whether 2422 MHz (Wi-Fi) RF exposure combined with UV radiation in different sequences has any effect on the inflammation process in the skin. In vitro experiments examined the inflammation process by cytokines (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion in a 3D full-thickness human skin model. In the first study, UV exposure was immediately followed by RF exposure to measure the potential additive effects, while in the second study, the possible protective phenomenon (i.e., adaptive response) was investigated when adaptive RF exposure was challenged by UV radiation. Our results suggest that 2422 MHz Wi-Fi exposure slightly, not significantly increased cytokine concentrations of the prior UV exposure. We could not detect the adaptive response phenomenon.


Subject(s)
Inflammation , Radio Waves , Humans , Radio Waves/adverse effects , Ultraviolet Rays/adverse effects , Skin , Cytokines
3.
Bioelectromagnetics ; 39(3): 231-243, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29171034

ABSTRACT

Experiments on cell cultures exposed to extremely low frequency (ELF, 3-300 Hz) magnetic fields are often subject to multiple sources of uncertainty associated with specific electric and magnetic field exposure conditions. Here we systemically quantify these uncertainties based on exposure conditions described in a group of bioelectromagnetic experimental reports for a representative sampling of the existing literature. The resulting uncertainties, stemming from insufficient, ambiguous, or erroneous description, design, implementation, or validation of the experimental methods and systems, were often substantial enough to potentially make any successful reproduction of the original experimental conditions difficult or impossible. Without making any assumption about the true biological relevance of ELF electric and magnetic fields, these findings suggest another contributing factor which may add to the overall variability and irreproducibility traditionally associated with experimental results of in vitro exposures to low-level ELF magnetic fields. Bioelectromagnetics. 39:231-243, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Electromagnetic Fields , Radiation Exposure/analysis , Uncertainty , Artifacts , Likelihood Functions , Retrospective Studies
4.
J Neurophysiol ; 113(7): 2753-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25695646

ABSTRACT

The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.


Subject(s)
Alpha Rhythm/physiology , Cell Phone , Electroencephalography/methods , Radio Waves , Rest/physiology , Saliva/metabolism , Adult , Alpha Rhythm/radiation effects , Caffeine/analysis , Electroencephalography/radiation effects , Female , Humans , Hydrocortisone/analysis , Male , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
5.
Electromagn Biol Med ; 34(3): 244-50, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26444200

ABSTRACT

Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.


Subject(s)
Cell Culture Techniques/instrumentation , Environmental Exposure/analysis , Laboratories , Magnetic Fields , Carbon Dioxide , Motion , Temperature , Water
6.
Microcirculation ; 20(7): 629-36, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23590124

ABSTRACT

OBJECTIVE: To establish whether SkBF can be modified by exposure to the radiofrequency waves emitted by a mobile phone when the latter is held against the jaw and ear. METHODS: Variations in SkBF and Tsk in adult volunteers were simultaneously recorded with a thermostatic laser Doppler system during a 20-minute "radiofrequency" exposure session and a 20-minute "sham" session. The skin microvessels' vasodilatory reserve was assessed with a heat challenge at the end of the protocol. RESULTS: During the radiofrequency exposure session, SkBF increased (vs. baseline) more than during the sham exposure session. The sessions did not differ significant in terms of the Tsk time-course response. The skin microvessels' vasodilatory ability was found to be greater during radiofrequency exposure than during sham exposure. CONCLUSIONS: Our results reveal the existence of a specific vasodilatory effect of mobile phone radiofrequency emission on skin perfusion.


Subject(s)
Cell Phone , Microcirculation/radiation effects , Radio Waves , Skin/blood supply , Vasodilation/radiation effects , Adult , Ear/blood supply , Female , Humans , Jaw/blood supply , Male , Time Factors
7.
Bioelectromagnetics ; 34(7): 530-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23787775

ABSTRACT

One of the most frequently investigated effects of radiofrequency electromagnetic fields (RF EMFs) on the behavior of complex biological systems is pain sensitivity. Despite the growing body of evidence of EMF-induced changes in pain sensation, there is no currently accepted experimental protocol for such provocation studies for the healthy human population. In the present study, therefore, we tested the effects of third generation Universal Mobile Telecommunications System (UMTS) RF EMF exposure on the thermal pain threshold (TPT) measured on the surface of the fingers of 20 young adult volunteers. The protocol was initially validated with a topical capsaicin treatment. The exposure time was 30 min and the genuine (or sham) signal was applied to the head through a patch antenna, where RF EMF specific absorption rate (SAR) values were controlled and kept constant at a level of 1.75 W/kg. Data were obtained using randomized, placebo-controlled trials in a double-blind manner. Subjective pain ratings were tested blockwise on a visual analogue rating scale (VAS). Compared to the control and sham conditions, the results provide evidence for intact TPT but a reduced desensitization effect between repeated stimulations within the individual blocks of trials, observable only on the contralateral side for the genuine UMTS exposure. Subjective pain perception (VAS) data indicated marginally decreased overall pain ratings in the genuine exposure condition only. The present results provide pioneering information about human pain sensation in relation to RF EMF exposure and thus may contribute to cover the existing gap between safety research and applied biomedical science targeting the potential biological effects of environmental RF EMFs.


Subject(s)
Cell Phone , Healthy Volunteers , Pain Threshold/radiation effects , Temperature , Adolescent , Adult , Capsaicin/pharmacology , Female , Humans , Male , Pain Perception/drug effects , Pain Perception/radiation effects , Pain Threshold/drug effects , Time Factors , Young Adult
8.
Bioelectromagnetics ; 34(1): 31-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22674213

ABSTRACT

Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN.


Subject(s)
Brain/radiation effects , Cell Phone , Electroencephalography/radiation effects , Environmental Exposure/adverse effects , Evoked Potentials, Auditory/radiation effects , Radio Waves/adverse effects , Adult , Female , Humans , Male , Young Adult
9.
Electromagn Biol Med ; 32(2): 173-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23675620

ABSTRACT

This study was designed to assess the nonlinear dynamics of heart rate variability (HRV) during exposure to low-intensity EMFs. Twenty-six healthy young volunteers were subjected to a rest-to-stand protocol to evaluate autonomic nervous system in quiet condition (rest, vagal prevalence) and after a sympathetic activation (stand). The procedure was conducted twice in a double-blind design: once with a genuine EMFs exposure (GSM cellular phone at 900 MHz, 2 W) and once with a sham exposure (at least 24 h apart). During each session, three-lead electrocardiograms were recorded and RR series extracted off-line. The RR series were analyzed by nonlinear deterministic techniques in every phase of the protocol and during the different exposures. The analysis of the data shows there was no statistically significant effect due to GSM exposure on the nonlinear dynamics of HRV.


Subject(s)
Cell Phone , Electromagnetic Fields/adverse effects , Heart Rate/radiation effects , Nonlinear Dynamics , Adult , Female , Healthy Volunteers , Humans , Male , Posture , Rest/physiology , Young Adult
10.
Radiat Prot Dosimetry ; 199(8-9): 865-871, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225187

ABSTRACT

Radiofrequency (RF) exposure has grown substantially over time in the public area. Personal dosimetry measurements are intended to estimate how human RF exposure relates to exposure limits that do not pose a health risk. For our case study, an outdoor festival was chosen to assess realistic RF exposure of young adults during their entertainment. Band-selective RF exposure-sorted along 2G-4G uplinks and downlinks, 5G and Wi-Fi bands-was evaluated. Electric field strength data subsets were classified on the basis of activities as well as crowd density. 2G contributed the most to the overall RF exposure. Highest RF exposure was associated with attendance in a concert. In moderately crowded situations, RF exposure was higher than in the most crowded ones. However, the total measured electric field values were higher than in other outdoor environment, but still far below the national and international directives of regulatory RF-EMF exposure limits.


Subject(s)
Environment , Radio Waves , Young Adult , Humans
11.
Bioelectromagnetics ; 33(8): 682-94, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22674152

ABSTRACT

In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male.


Subject(s)
Cities/statistics & numerical data , Electromagnetic Fields , Environmental Exposure/analysis , Radio Waves , Whole-Body Irradiation , Absorption , Adult , Body Burden , Environment , Humans , Infant , Male , Phantoms, Imaging
12.
Heliyon ; 8(5): e09421, 2022 May.
Article in English | MEDLINE | ID: mdl-35607495

ABSTRACT

IEI-EMF refers to a self-reported sensitivity characterized by attribution of non-specific physical symptoms to exposure to weak EMFs. The majority of empirical results do not support the existence of a causal relationship between EMF and IEI-EMF. However, this conclusion was drawn from environmental and experimental studies that are not without methodological limitations. In the current study, as part of a complex biopsychosocial approach, an ecological momentary assessment (EMA) protocol was applied for the investigation of the temporal relationship between actual radio frequency (RF) EMF exposure and IEI-EMF, at the individual level. Continuous measurement of autonomic variables by holter electrocardiogram (ECG) monitors and the ambient RF EMF by personal dosimeters, as well as repeated (8/day) paper-and-pencil assessments of momentary internal states (symptoms, mood, perceived EMF intensity) and situational factors was conducted for 21 days with the participation of three individuals with severe IEI-EMF. Temporal relationships were examined by time series analyses. For two participants, the results did not support the association between the suspected EMF frequency range(s) and symptom reports. Nevertheless, the results revealed a reverse association with respect to another frequency range (GSM900 downlink), which contradicts the IEI-EMF condition. Autonomic activation related findings were inconsistent. For the third participant, the claimed association was partly supported, both for symptom reports and autonomic reactions (UMTS downlink, total RF; RMS values). The findings of this study suggest that IEI-EMF does not have a unitary aetiology. For certain individuals, a biophysical background cannot be excluded, whereas no such underlying factor appears to be at work for others. EMA is a useful method for the investigation of the aetiology of IEI-EMF.

13.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35564185

ABSTRACT

When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.

14.
Environ Res ; 110(7): 658-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20638656

ABSTRACT

BACKGROUND: Only limited data are available on personal radio frequency electromagnetic field (RF-EMF) exposure in everyday life. Several European countries performed measurement studies in this area of research. However, a comparison between countries regarding typical exposure levels is lacking. OBJECTIVES: To compare for the first time mean exposure levels and contributions of different sources in specific environments between different European countries. METHODS: In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), measurement studies were performed using the same personal exposure meters. The pooled data were analyzed using the robust regression on order statistics (ROS) method in order to allow for data below the detection limit. Mean exposure levels were compared between different microenvironments such as homes, public transports, or outdoor. RESULTS: Exposure levels were of the same order of magnitude in all countries and well below the international exposure limits. In all countries except for the Netherlands, the highest total exposure was measured in transport vehicles (trains, car, and busses), mainly due to radiation from mobile phone handsets (up to 97%). Exposure levels were in general lower in private houses or flats than in offices and outdoors. At home, contributions from various sources were quite different between countries. CONCLUSIONS: Highest total personal RF-EMF exposure was measured inside transport vehicles and was well below international exposure limits. This is mainly due to mobile phone handsets. Mobile telecommunication can be considered to be the main contribution to total RF-EMF exposure in all microenvironments.


Subject(s)
Electromagnetic Fields , Environmental Exposure , Radio Waves , Urban Population , Europe , Humans
15.
Environ Health ; 9: 23, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20487532

ABSTRACT

BACKGROUND: The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. METHODS: The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. RESULTS: We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. CONCLUSION: Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.


Subject(s)
Environmental Exposure , Radio Waves , Environmental Exposure/adverse effects , Geographic Information Systems , Humans , Medical Records , Patient Selection , Radiation , Radio Waves/adverse effects , Research Design , Statistics as Topic , Surveys and Questionnaires
16.
Bioelectromagnetics ; 31(6): 488-94, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20564169

ABSTRACT

The aim of this study was to reveal whether static magnetic fields (SMFs) influence the repair of radiation-damaged DNA on leukocytes or has any effect on DNA. After 4 Gy of (60)Co-gamma irradiation, some of the samples were exposed to inhomogeneous SMFs with a lateral magnetic flux density gradient of 47.7, 1.2, or 0.3 T/m by 10 mm lateral periodicity, while other samples were exposed to homogeneous SMF of 159.2 +/- 13.4 mT magnetic flux density for a time period of 0.5 min, 1, 2, 4, 6, 18, 20, or 24 h. Another set of samples was exposed to the aforementioned SMFs before gamma irradiation. The following three groups were examined: (i) exposed to SMF only, (ii) exposed to SMF following irradiation by (60)Co-gamma, and (iii) exposed to SMF before (60)Co-gamma irradiation. The analysis of the DNA damage was made by single-cell gel electrophoresis technique (comet assay). Statistically significant differences were found at 1 h (iSMF), 4 h (hSMF), and 18 h (hSMF) if samples were exposed to only SMF, compared to control. When the SMF exposure followed the (60)Co-gamma irradiation, statistically significant differences were found at 1 h (iSMF) and 4 h (hSMF). If exposure to SMF preceded (60)Co-gamma irradiation, no statistically significant difference was found compared to 4 Gy gamma-irradiated group.


Subject(s)
DNA Repair/radiation effects , DNA/genetics , Gamma Rays , Magnetics , Adult , DNA Damage , Humans , Leukocytes/metabolism , Leukocytes/radiation effects , Male , Middle Aged , Time Factors
17.
Article in English | MEDLINE | ID: mdl-32575398

ABSTRACT

The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.


Subject(s)
Cell Phone , Inflammation , Radio Waves , Ultraviolet Rays , Cytokines/metabolism , Humans , Models, Biological , Radio Waves/adverse effects , Skin , Ultraviolet Rays/adverse effects
18.
Radiat Res ; 172(2): 244-51, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19630529

ABSTRACT

Abstract The European project EMFnEAR was undertaken to assess potential changes in human auditory function after a short-term exposure to radiofrequency (RF) radiation produced by UMTS (Universal Mobile Telecommunication System) mobile phones. Participants were healthy young adults with no hearing or ear disorders. Auditory function was assessed immediately before and after exposure to radiofrequency radiation, and only the exposed ear was tested. Tests for the assessment of auditory function were hearing threshold level (HTL), distortion product otoacoustic emissions (DPOAE), contralateral suppression of transiently evoked otoacoustic emission (CAS effect on TEOAE), and auditory evoked potentials (AEP). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham RF-radiation exposure produced by a commercial phone controlled by a personal computer. Results from 134 participants did not show any consistent pattern of effects on the auditory system after a 20-min UMTS exposure at the maximum output of the phone with 69 mW/kg SAR in the cochlea region in a double blind comparison of genuine and sham exposure. An isolated effect on the hearing threshold at high frequencies was identified, but this was statistically nonsignificant after correction for multiple comparisons. It is concluded that UMTS short-term exposure at the maximum output of consumer mobile phones does not cause measurable immediate effects on the human auditory system.


Subject(s)
Auditory Perception/physiology , Auditory Perception/radiation effects , Cell Phone , Environmental Exposure , Hearing/physiology , Hearing/radiation effects , Adolescent , Adult , Electromagnetic Fields , Europe , Female , Hearing Tests , Humans , Male , Radiation Dosage , Young Adult
19.
Article in English | MEDLINE | ID: mdl-31561904

ABSTRACT

The widespread presence of electromagnetic sources in daily life has initiated several studies on the effects of radiofrequency and power frequency fields. Only few investigations on the genotoxic effects of exposure to intermediate frequency magnetic fields (IF-MF) have been done so far. Therefore, the aim of this study was to evaluate possible genotoxic effects of exposure to 123.90 kHz and 250.80 kHz IF-MF on canine and human blood. Blood was exposed to IF-MF at 630 A/m (0.79 mT) and 80 A/m (0.10 m T) with exposure durations of 1-5 h (hourly), 20 and 24 h. Cylindrically divided Petri dish system was developed for in vitro exposures where different induced current could be achieved in the samples at the same magnetic flux density level. For the assessment of genotoxicity the alkaline comet assay was applied. We detected a statistically significant increase in DNA damage only following 20 h exposure to IF-MF.


Subject(s)
Comet Assay , DNA Damage , Leukocytes/radiation effects , Magnetic Fields/adverse effects , Adult , Animals , Cell Culture Techniques/instrumentation , Cells, Cultured , DNA/blood , DNA/radiation effects , Dogs , Dose-Response Relationship, Radiation , Electromagnetic Fields , Equipment Design , Female , Humans , Leukocytes/chemistry , Magnetics/instrumentation , Male , Middle Aged
20.
Radiat Prot Dosimetry ; 131(4): 469-73, 2008.
Article in English | MEDLINE | ID: mdl-18667401

ABSTRACT

Exposure to 50 Hz magnetic field (MF) was evaluated in 31 multi-level apartment buildings with built-in step-down transformer stations. In each building, three apartments were selected: one apartment located immediately above the transformer room (index apartment), one located on the same floor and one on a higher floor. The mean value of measured MFs was 0.98 microT in apartments above transformers, 0.13 microT on the same floor, and 0.1 microT in on higher floors. The mean measured MF value was higher than 0.2 microT in 30 (97%) index apartments, 4 (14%) on the same floor as the index apartments and 4 (13%) on higher floors. The corresponding numbers were 25 (81%), 0 and 0, respectively, when 0.4 microT was used as cut-point. It is concluded that apartments in building with built-in transformers can be reliably classified into high and low-exposure categories based on their location in relation to transformers.


Subject(s)
Electricity , Electromagnetic Fields , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Housing , Radiation Dosage , Radiation Monitoring/methods , Hungary
SELECTION OF CITATIONS
SEARCH DETAIL