Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
CA Cancer J Clin ; 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32964460

ABSTRACT

Outdoor air pollution is a major contributor to the burden of disease worldwide. Most of the global population resides in places where air pollution levels, because of emissions from industry, power generation, transportation, and domestic burning, considerably exceed the World Health Organization's health-based air-quality guidelines. Outdoor air pollution poses an urgent worldwide public health challenge because it is ubiquitous and has numerous serious adverse human health effects, including cancer. Currently, there is substantial evidence from studies of humans and experimental animals as well as mechanistic evidence to support a causal link between outdoor (ambient) air pollution, and especially particulate matter (PM) in outdoor air, with lung cancer incidence and mortality. It is estimated that hundreds of thousands of lung cancer deaths annually worldwide are attributable to PM air pollution. Epidemiological evidence on outdoor air pollution and the risk of other types of cancer, such as bladder cancer or breast cancer, is more limited. Outdoor air pollution may also be associated with poorer cancer survival, although further research is needed. This report presents an overview of outdoor air pollutants, sources, and global levels, as well as a description of epidemiological evidence linking outdoor air pollution with cancer incidence and mortality. Biological mechanisms of air pollution-derived carcinogenesis are also described. This report concludes by summarizing public health/policy recommendations, including multilevel interventions aimed at individual, community, and regional scales. Specific roles for medical and health care communities with regard to prevention and advocacy and recommendations for further research are also described.

2.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35737879

ABSTRACT

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Humans , Particulate Matter/analysis
3.
Environ Monit Assess ; 195(1): 103, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36374344

ABSTRACT

Particulate matter (PM) pollution is a significant concern in public health, yet children's exposure is not adequately characterized. This study evaluated PM exposures among primary school-aged children in NYS across different microenvironments. This study helps fill existing knowledge gaps by characterizing PM exposure among this population across seasons and microenvironments. Sixty students were recruited from randomly selected public primary schools representing various socioeconomic statuses. Individual real-time exposure to PM2.5 was measured continuously using AirBeam personal monitors for 48 h. Children were consistently exposed to higher PM2.5 concentrations in the fall (median: fall = 2.84, spring = 2.31, winter = 0.90 µg/m3). At school, 2.19% of PM2.5 measurements exceeded the EPA annual fine particle standard, 12 µg/m3 (winter = 7.38%, fall = 2.39%, spring = 1.38%). In classrooms, PM1-4 concentrations were higher in spring and overnight, while PM7-10 concentrations were higher in fall and school hours. At home, 37.2% of fall measurements exceeded EPA standards (spring = 10.39%, winter = 4.37%). Overall, PM2.5 levels in classrooms and during transportation never rose above the EPA standard for any significant length of time. However, PM2.5 levels routinely exceeded these standards at home, in the fall, and the evening. More extensive studies are needed to confirm these results.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Child , Particulate Matter/analysis , Air Pollutants/analysis , Seasons , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Environmental Monitoring/methods , Students , Air Pollution/analysis
4.
Biophys J ; 120(7): 1161-1169, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33453268

ABSTRACT

Living cells organize their internal space into dynamic condensates through liquid-liquid phase separation of multivalent proteins in association with cellular nucleic acids. Here, we study how variations in nucleic acid (NA)-to-protein stoichiometry modulate the condensed phase organization and fluid dynamics in a model system of multicomponent heterotypic condensates. Employing a multiparametric approach comprised of video particle tracking microscopy and optical tweezer-induced droplet fusion, we show that the interfacial tension, but not viscosity, of protein-NA condensates is controlled by the NA/protein ratio across the two-phase regime. In parallel, we utilize fluorescence correlation spectroscopy to quantify protein and NA diffusion in the condensed phase. Fluorescence correlation spectroscopy measurements reveal that the diffusion of the component protein and NA within the condensate core is governed by the viscosity, and hence, also remains insensitive to the changes in NA-to-protein stoichiometry. Collectively, our results provide insights into the regulation of multicomponent heterotypic liquid condensates, reflecting how the bulk mixture composition affects their core versus surface organization and dynamical properties.


Subject(s)
Nucleic Acids , Diffusion , Proteins , Surface Tension , Viscosity
5.
J Synchrotron Radiat ; 28(Pt 2): 490-498, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650561

ABSTRACT

An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.


Subject(s)
Proteins , Synchrotrons , X-Rays
6.
Environ Res ; 197: 110986, 2021 06.
Article in English | MEDLINE | ID: mdl-33689822

ABSTRACT

BACKGROUND: Commercial databases can be used to identify participant addresses over time, but their quality and impact on environmental exposure assessment is uncertain. OBJECTIVE: To evaluate the performance of a commercial database to find residences and estimate environmental exposures for study participants. METHODS: We searched LexisNexis® for participant addresses in the Los Angeles Ultrafines Study, a prospective cohort of men and women aged 50-71 years. At enrollment (1995-1996) and follow-up (2004-2005), we evaluated attainment (address found for the corresponding time period) and match rates to survey addresses by participant characteristics. We compared geographically-referenced predictors and estimates of ultrafine particulate matter (UFP) exposure from a land use regression model using LexisNexis and survey addresses at enrollment. RESULTS: LexisNexis identified an address for 69% of participants at enrollment (N = 50,320) and 95% of participants at follow-up (N = 24,432). Attainment rate at enrollment modestly differed (≥5%) by age, smoking status, education, and residential mobility between surveys. The match rate at both survey periods was high (82-86%) and similar across characteristics. When using LexisNexis versus survey addresses, correlations were high for continuous values of UFP exposure and its predictors (rho = 0.86-0.92). SIGNIFICANCE: Time period and population characteristics influenced the attainment of addresses from a commercial database, but accuracy and subsequent estimation of specific air pollution exposures were high in our older study population.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Female , Humans , Los Angeles/epidemiology , Male , Particulate Matter/analysis , Prospective Studies
7.
Proc Natl Acad Sci U S A ; 115(38): 9592-9597, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181279

ABSTRACT

Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure/adverse effects , Global Burden of Disease/statistics & numerical data , Noncommunicable Diseases/mortality , Particulate Matter/toxicity , Air Pollution/adverse effects , Bayes Theorem , Cohort Studies , Global Health/statistics & numerical data , Humans , Proportional Hazards Models , Risk Assessment , Time Factors
8.
Circulation ; 139(15): 1766-1775, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30700142

ABSTRACT

BACKGROUND: Recent experimental evidence suggests that nutritional supplementation can blunt adverse cardiopulmonary effects induced by acute air pollution exposure. However, whether usual individual dietary patterns can modify the association between long-term air pollution exposure and health outcomes has not been previously investigated. We assessed, in a large cohort with detailed diet information at the individual level, whether a Mediterranean diet modifies the association between long-term exposure to ambient air pollution and cardiovascular disease mortality risk. METHODS: The National Institutes of Health-American Association for Retired Persons Diet and Health Study, a prospective cohort (N=548 845) across 6 states and 2 cities in the United States and with a follow-up period of 17 years (1995-2011), was linked to estimates of annual average exposures to fine particulate matter and nitrogen dioxide at the residential census-tract level. The alternative Mediterranean Diet Index, which uses a 9-point scale to assess conformity with a Mediterranean-style diet, was constructed for each participant from information in cohort baseline dietary questionnaires. We evaluated mortality risks for cardiovascular disease, ischemic heart disease, cerebrovascular disease, or cardiac arrest associated with long-term air pollution exposure. Effect modification of the associations between exposure and the mortality outcomes by alternative Mediterranean Diet Index was examined via interaction terms. RESULTS: For fine particulate matter, we observed elevated and significant associations with cardiovascular disease (hazard ratio [HR] per 10 µg/m3, 1.13; 95% CI, 1.08-1.18), ischemic heart disease (HR, 1.16; 95% CI, 1.10-1.23), and cerebrovascular disease (HR, 1.15; 95% CI, 1.03-1.28). For nitrogen dioxide, we found significant associations with cardiovascular disease (HR per 10 ppb, 1.06; 95% CI, 1.04-1.08) and ischemic heart disease (HR, 1.08; 95% CI, 1.05-1.11). Analyses indicated that Mediterranean diet modified these relationships, as those with a higher alternative Mediterranean Diet Index score had significantly lower rates of cardiovascular disease mortality associated with long-term air pollution exposure ( P-interaction<0.05). CONCLUSIONS: A Mediterranean diet reduced cardiovascular disease mortality risk related to long-term exposure to air pollutants in a large prospective US cohort. Increased consumption of foods rich in antioxidant compounds may aid in reducing the considerable disease burden associated with ambient air pollution.


Subject(s)
Air Pollutants/adverse effects , Cardiovascular Diseases/prevention & control , Diet, Healthy , Diet, Mediterranean , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Aged , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Female , Humans , Male , Middle Aged , Nutritive Value , Prognosis , Prospective Studies , Protective Factors , Risk Factors , Time Factors , United States/epidemiology
9.
Circulation ; 139(19): e917-e936, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30845826

ABSTRACT

Tobacco smoking with a water pipe or hookah is increasing globally. There are millions of water pipe tobacco smokers worldwide, and in the United States, water pipe use is more common among youth and young adults than among adults. The spread of water pipe tobacco smoking has been abetted by the marketing of flavored tobacco, a social media environment that promotes water pipe smoking, and misperceptions about the addictive potential and potential adverse health effects of this form of tobacco use. There is growing evidence that water pipe tobacco smoking affects heart rate, blood pressure regulation, baroreflex sensitivity, tissue oxygenation, and vascular function over the short term. Long-term water pipe use is associated with increased risk of coronary artery disease. Several harmful or potentially harmful substances present in cigarette smoke are also present in water pipe smoke, often at levels exceeding those found in cigarette smoke. Water pipe tobacco smokers have a higher risk of initiation of cigarette smoking than never smokers. Future studies that focus on the long-term adverse health effects of intermittent water pipe tobacco use are critical to strengthen the evidence base and to inform the regulation of water pipe products and use. The objectives of this statement are to describe the design and operation of water pipes and their use patterns, to identify harmful and potentially harmful constituents in water pipe smoke, to document the cardiovascular risks of water pipe use, to review current approaches to water pipe smoking cessation, and to offer guidance to healthcare providers for the identification and treatment of individuals who smoke tobacco using water pipes.


Subject(s)
Cardiovascular Diseases/epidemiology , Water Pipe Smoking/epidemiology , American Heart Association , Humans , Practice Guidelines as Topic , Risk , Smoking Cessation , United States/epidemiology
10.
Am J Respir Crit Care Med ; 200(8): 1022-1031, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31051079

ABSTRACT

Rationale: Many studies have linked short-term exposure to ozone (O3) with morbidity and mortality, but epidemiologic evidence of associations between long-term O3 exposure and mortality is more limited.Objectives: To investigate associations of long-term (annual or warm season average of daily 8-h maximum concentrations) O3 exposure with all-cause and cause-specific mortality in the NIH-AARP Diet and Health Study, a large prospective cohort of U.S. adults with 17 years of follow-up from 1995 to 2011.Methods: The cohort (n = 548,780) was linked to census tract-level estimates for O3. Associations between long-term O3 exposure (averaged values from 2002 to 2010) and multiple causes of death were evaluated using multivariate Cox proportional hazards models, adjusted for individual- and census tract-level covariates, and potentially confounding copollutants and temperature.Measurements and Main Results: Long-term annual average exposure to O3 was significantly associated with deaths caused by cardiovascular disease (per 10 ppb; hazard ratio [HR], 1.03; 95% confidence interval [CI], 1.01-1.06), ischemic heart disease (HR, 1.06; 95% CI, 1.02-1.09), respiratory disease (HR, 1.04; 95% CI, 1.00-1.09), and chronic obstructive pulmonary disease (HR, 1.09; 95% CI, 1.03-1.15) in single-pollutant models. The results were robust to alternative models and adjustment for copollutants (fine particulate matter and nitrogen dioxide), although some evidence of confounding by temperature was observed. Significantly elevated respiratory disease mortality risk associated with long-term O3 exposure was found among those living in locations with high temperature (Pinteraction < 0.05).Conclusions: This study found that long-term exposure to O3 is associated with increased risk for multiple causes of mortality, suggesting that establishment of annual and/or seasonal federal O3 standards is needed to more adequately protect public health from ambient O3 exposures.


Subject(s)
Air Pollution/adverse effects , Cause of Death , Environmental Exposure/adverse effects , Oxidants, Photochemical/adverse effects , Ozone/adverse effects , Respiratory Tract Diseases/chemically induced , Respiratory Tract Diseases/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Risk Assessment , Risk Factors , United States/epidemiology , Young Adult
11.
Curr Diab Rep ; 19(8): 58, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31325070

ABSTRACT

PURPOSE OF REVIEW: Ambient air pollution is strongly linked to cardiovascular and respiratory diseases. We summarize available published evidence regarding similar associations with diabetes across the life course. RECENT FINDINGS: We performed a life-course survey of the recent literature, including prenatal, gestational, childhood/adolescence, and adult exposures to air pollution. Oxidative stress is identified as a key factor in both metabolic dysfunction and the effects of air pollution exposure, especially from fossil fuel combustion products, providing a plausible mechanism for air pollution-diabetes associations. The global burden of diabetes attributed to air pollution exposure is substantial, with a recent estimate that ambient fine particulate matter (PM2.5) exposure contributes to more than 200,000 deaths from diabetes annually. There is a growing body of literature linking air pollution exposure during childhood and adulthood with diabetes etiology and related cardiometabolic biomarkers. A small number of studies found that exposure to air pollution during pregnancy is associated with elevated gestational diabetes risk among mothers. Studies examining prenatal air pollution exposure and diabetes risk among the offspring, as well as potential transgenerational effects of air pollution exposure, are very limited thus far. This review provides insight into how air pollutants affect diabetes and other metabolic dysfunction-related diseases across the different life stages.


Subject(s)
Air Pollution , Diabetes, Gestational , Oxidative Stress , Air Pollutants , Environmental Exposure , Female , Humans , Pregnancy
12.
Environ Res ; 177: 108597, 2019 10.
Article in English | MEDLINE | ID: mdl-31401375

ABSTRACT

BACKGROUND: Land use regression (LUR) models have been widely used to estimate air pollution exposures at high spatial resolution. However, few LUR models were developed for rapidly developing urban cores, which have substantially higher densities of population and built-up areas than the surrounding areas within a city's administrative boundary. Further, few studies incorporated vertical variations of air pollution in exposure assessment, which might be important to estimate exposures for people living in high-rise buildings. OBJECTIVE: A LUR model was developed for the urban core of Lanzhou, China, along with a model of vertical concentration gradients in high-rise buildings. METHODS: In each of four seasons in 2016-2017, NO2 was measured using Ogawa badges for 2 weeks at 75 ground-level sites. PM2.5 was measured using DataRAM for shorter time intervals at a subset (N = 38) of the 75 sites. Vertical profile measurements were conducted on 9 stories at 2 high-rise buildings (N = 18), with one building facing traffic and another facing away from traffic. The average seasonal concentrations of NO2 and PM2.5 at ground level were regressed against spatial predictors, including elevation, population, road network, land cover, and land use. The vertical variations were investigated and linked to ground-level predictions with exponential models. RESULTS: We developed robust LUR models at the ground level for estimated annual averages of NO2 (R2: 0.71, adjusted R2: 0.67, and Leave-One-Out Cross Validation (LOOCV) R2: 0.64) and PM2.5 (R2: 0.77, adjusted R2: of 0.73, and LOOCV R2: 0.67) in the urban core of Lanzhou, China. The LUR models for the estimated seasonal averages of NO2 showed similar patterns. Vertical variation of NO2 and PM2.5 differed by windows orientation with respect to traffic, by season or by time of a day. Vertical variation functions incorporated the ground-level LUR predictions, in a form that could allow for exposure assessment in future epidemiological investigations. CONCLUSIONS: Ground-level NO2 and PM2.5 showed substantial spatial variations, explained by traffic and land use patterns. Further, vertical variation of air pollution levels is significant under certain conditions, suggesting that exposure misclassification could occur with traditional LUR that ignores vertical variation. More studies are needed to fully characterize three-dimensional concentration patterns to accurately estimate air pollution exposures for residents in high-rise buildings, but our LUR models reinforce that concentration heterogeneity is not captured by the limited government monitors in the Lanzhou urban area.


Subject(s)
Air Pollutants , Air Pollution/statistics & numerical data , Nitrogen Dioxide/analysis , Particulate Matter/analysis , China , Cities , Environmental Monitoring
15.
Environ Res ; 165: 330-336, 2018 08.
Article in English | MEDLINE | ID: mdl-29778967

ABSTRACT

OBJECTIVE: Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. RESEARCH DESIGN AND METHODS: We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM2.5, NO2, and O3. Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. RESULTS: Diabetes mortality was significantly associated with increasing levels of both PM2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 µg/m3) and NO2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. CONCLUSIONS: We found that long-term exposure to PM2.5 and NO2, but not O3, is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes.


Subject(s)
Air Pollution/adverse effects , Diabetes Mellitus/mortality , Environmental Exposure/adverse effects , Cohort Studies , Female , Humans , Male , Particulate Matter , United States/epidemiology
16.
Eur Respir J ; 49(1)2017 01.
Article in English | MEDLINE | ID: mdl-28077473

ABSTRACT

The American Thoracic Society has previously published statements on what constitutes an adverse effect on health of air pollution in 1985 and 2000. We set out to update and broaden these past statements that focused primarily on effects on the respiratory system. Since then, many studies have documented effects of air pollution on other organ systems, such as on the cardiovascular and central nervous systems. In addition, many new biomarkers of effects have been developed and applied in air pollution studies.This current report seeks to integrate the latest science into a general framework for interpreting the adversity of the human health effects of air pollution. Rather than trying to provide a catalogue of what is and what is not an adverse effect of air pollution, we propose a set of considerations that can be applied in forming judgments of the adversity of not only currently documented, but also emerging and future effects of air pollution on human health. These considerations are illustrated by the inclusion of examples for different types of health effects of air pollution.


Subject(s)
Air Pollutants/analysis , Air Pollution/adverse effects , Biomarkers , Environmental Exposure/adverse effects , Cardiovascular Diseases/etiology , Humans , Practice Guidelines as Topic , Risk Factors , Societies, Medical , United States
17.
J Chem Phys ; 146(5): 055101, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178791

ABSTRACT

We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.


Subject(s)
Lens, Crystalline/chemistry , Thermodynamics , alpha-Crystallins/analysis , gamma-Crystallins/analysis , Animals , Cattle , Models, Biological , Models, Statistical , Scattering, Radiation
18.
Proc Natl Acad Sci U S A ; 111(47): 16748-53, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385638

ABSTRACT

We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.


Subject(s)
Lens, Crystalline/metabolism , alpha-Crystallins/metabolism , Animals , Cattle , Scattering, Radiation , Viscosity , alpha-Crystallins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL