Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436697

ABSTRACT

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Ovarian Neoplasms , Stress Granules , Y-Box-Binding Protein 1 , Female , Humans , Endodeoxyribonucleases , Ovarian Neoplasms/genetics , Phosphorylation , Stress Granules/metabolism , Y-Box-Binding Protein 1/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
2.
Am J Physiol Cell Physiol ; 327(1): C168-C183, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38826139

ABSTRACT

In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA polymerase mu (POLM), especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. In addition, our research reveals that POLMG312R perturbs collagen alpha-1 (XI) chain (COL11A1) expression-a gene that plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.NEW & NOTEWORTHY Our research reveals that POLM plays an important role in ovarian cancer development, especially the mutation G312R. We uncover the POLMG312R mutation as a driver of genomic instability in ovarian cancer via aberrant ribonucleotide incorporation. We reveal that POLMG312R upregulates COL11A1 and activates NF-κB signaling, contributing to tumor progression and chemoresistance. This study identifies the POLM-COL11A1-NF-κB axis as a novel oncogenic pathway.


Subject(s)
Collagen Type XI , Genomic Instability , NF-kappa B , Ovarian Neoplasms , Signal Transduction , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Genomic Instability/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Collagen Type XI/genetics , Collagen Type XI/metabolism , Cell Line, Tumor , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Mutation , Animals
3.
J Am Chem Soc ; 146(17): 11669-11678, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38644738

ABSTRACT

Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.


Subject(s)
Fluorescent Dyes , G-Quadruplexes , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , Neoplasm Metastasis , Mice , Molecular Docking Simulation , Drug Design , Infrared Rays , Cell Line, Tumor , Molecular Structure
4.
Eur Radiol ; 34(7): 4610-4618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38108888

ABSTRACT

OBJECTIVES: In patients with an unruptured intracranial aneurysm, gadolinium enhancement of the aneurysm wall is associated with growth and rupture. However, most previous studies did not have a longitudinal design and did not adjust for aneurysm size, which is the main predictor of aneurysm instability and the most important determinant of wall enhancement. We investigated whether aneurysm wall enhancement predicts aneurysm growth and rupture during follow-up and whether the predictive value was independent of aneurysm size. MATERIALS AND METHODS: In this multicentre longitudinal cohort study, individual patient data were obtained from twelve international cohorts. Inclusion criteria were as follows: 18 years or older with ≥ 1 untreated unruptured intracranial aneurysm < 15 mm; gadolinium-enhanced aneurysm wall imaging and MRA at baseline; and MRA or rupture during follow-up. Patients were included between November 2012 and November 2019. We calculated crude hazard ratios with 95%CI of aneurysm wall enhancement for growth (≥ 1 mm increase) or rupture and adjusted for aneurysm size. RESULTS: In 455 patients (mean age (SD), 60 (13) years; 323 (71%) women) with 559 aneurysms, growth or rupture occurred in 13/194 (6.7%) aneurysms with wall enhancement and in 9/365 (2.5%) aneurysms without enhancement (crude hazard ratio 3.1 [95%CI: 1.3-7.4], adjusted hazard ratio 1.4 [95%CI: 0.5-3.7]) with a median follow-up duration of 1.2 years. CONCLUSIONS: Gadolinium enhancement of the aneurysm wall predicts aneurysm growth or rupture during short-term follow-up, but not independent of aneurysm size. CLINICAL RELEVANCE STATEMENT: Gadolinium-enhanced aneurysm wall imaging is not recommended for short-term prediction of growth and rupture, since it appears to have no additional value to conventional predictors. KEY POINTS: • Although aneurysm wall enhancement is associated with aneurysm instability in cross-sectional studies, it remains unknown whether it predicts risk of aneurysm growth or rupture in longitudinal studies. • Gadolinium enhancement of the aneurysm wall predicts aneurysm growth or rupture during short-term follow-up, but not when adjusting for aneurysm size. • While gadolinium-enhanced aneurysm wall imaging is not recommended for short-term prediction of growth and rupture, it may hold potential for aneurysms smaller than 7 mm.


Subject(s)
Aneurysm, Ruptured , Contrast Media , Gadolinium , Intracranial Aneurysm , Magnetic Resonance Angiography , Humans , Intracranial Aneurysm/diagnostic imaging , Female , Male , Longitudinal Studies , Aneurysm, Ruptured/diagnostic imaging , Middle Aged , Magnetic Resonance Angiography/methods , Aged , Cohort Studies
5.
Cell Biol Int ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973665

ABSTRACT

Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.

6.
Cell Mol Biol Lett ; 29(1): 12, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212723

ABSTRACT

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) exist in human blood and somatic cells, and are essential for oncogene plasticity and drug resistance. However, the presence and impact of eccDNAs in type 2 diabetes mellitus (T2DM) remains inadequately understood. METHODS: We purified and sequenced the serum eccDNAs obtained from newly diagnosed T2DM patients and normal control (NC) subjects using Circle-sequencing. We validated the level of a novel circulating eccDNA named sorbin and SH3-domain- containing-1circle97206791-97208025 (SORBS1circle) in 106 newly diagnosed T2DM patients. The relationship between eccDNA SORBS1circle and clinical data was analyzed. Furthermore, we explored the source and expression level of eccDNA SORBS1circle in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. RESULTS: A total of 22,543 and 19,195 eccDNAs were found in serum samples obtained from newly diagnosed T2DM patients and NC subjects, respectively. The T2DM patients had a greater distribution of eccDNA on chromosomes 1, 14, 16, 17, 18, 19, 20 and X. Additionally, 598 serum eccDNAs were found to be upregulated, while 856 eccDNAs were downregulated in T2DM patients compared with NC subjects. KEGG analysis demonstrated that the genes carried by eccDNAs were mainly associated with insulin resistance. Moreover, it was validated that the eccDNA SORBS1circle was significantly increased in serum of newly diagnosed T2DM patients (106 T2DM patients vs. 40 NC subjects). The serum eccDNA SORBS1circle content was positively correlated with the levels of glycosylated hemoglobin A1C (HbA1C) and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients. Intracellular eccDNA SORBS1circle expression was significantly enhanced in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. Moreover, the upregulation of eccDNA SORBS1circle in the HG/PA-treated HepG2 cells was dependent on generation of apoptotic DNA fragmentation. CONCLUSIONS: These results provide a preliminary understanding of the circulating eccDNA patterns at the early stage of T2DM and suggest that eccDNA SORBS1circle may be involved in the development of insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/genetics , DNA , DNA, Circular/genetics , Palmitates , Glucose , Microfilament Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602816

ABSTRACT

Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.


Subject(s)
Cell Membrane , Fluorescent Dyes/chemistry , Molecular Imaging/methods , Spectroscopy, Near-Infrared/methods , Animals , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Diffusion , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Hep G2 Cells , Humans , Mice , NIH 3T3 Cells , Neoplasms, Experimental/diagnostic imaging , Proof of Concept Study , Quinazolinones/chemistry , Xenograft Model Antitumor Assays , gamma-Glutamyltransferase/analysis , gamma-Glutamyltransferase/metabolism
8.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338939

ABSTRACT

Deinococcus radiodurans is an extremophilic microorganism that possesses a unique DNA damage repair system, conferring a strong resistance to radiation, desiccation, oxidative stress, and chemical damage. Recently, we discovered that D. radiodurans possesses an N4-methylation (m4C) methyltransferase called M.DraR1, which recognizes the 5'-CCGCGG-3' sequence and methylates the second cytosine. Here, we revealed its cognate restriction endonuclease R.DraR1 and recognized that it is the only endonuclease specially for non-4C-methylated 5'-CCGCGG-3' sequence so far. We designated the particular m4C R.DraR1-M.DraR1 as the DraI R-M system. Bioinformatics searches displayed the rarity of the DraI R-M homologous system. Meanwhile, recombination and transformation efficiency experiments demonstrated the important role of the DraI R-M system in response to oxidative stress. In addition, in vitro activity experiments showed that R.DraR1 could exceptionally cleave DNA substrates with a m5C-methlated 5'-CCGCGG-3' sequence instead of its routine activity, suggesting that this particular R-M component possesses a broader substrate choice. Furthermore, an imbalance of the DraI R-M system led to cell death through regulating genes involved in the maintenance of cell survival such as genome stability, transporter, and energy production. Thus, our research revealed a novel m4C R-M system that plays key roles in maintaining cell viability and defending foreign DNA in D. radiodurans.


Subject(s)
Deinococcus , Deinococcus/genetics , Deinococcus/metabolism , DNA Restriction-Modification Enzymes/genetics , DNA Restriction-Modification Enzymes/metabolism , DNA Repair , DNA/metabolism , Oxidative Stress , Bacterial Proteins/metabolism
9.
Angew Chem Int Ed Engl ; 63(18): e202316431, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38012084

ABSTRACT

Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.

10.
Angew Chem Int Ed Engl ; 63(11): e202315217, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38081782

ABSTRACT

Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.


Subject(s)
Diagnostic Imaging , Fluorescent Dyes , Fluorescent Dyes/chemistry , Luminescence , Optical Imaging/methods
11.
Angew Chem Int Ed Engl ; : e202410666, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007416

ABSTRACT

Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.

12.
Angew Chem Int Ed Engl ; 63(16): e202400637, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38409519

ABSTRACT

Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.


Subject(s)
Leucyl Aminopeptidase , Optical Imaging , Humans , Fluorescence , Microscopy, Fluorescence/methods , Endoplasmic Reticulum , Spectrometry, Fluorescence/methods , Fluorescent Dyes , Aminopeptidases , Minor Histocompatibility Antigens
13.
J Am Chem Soc ; 145(49): 26736-26746, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38015824

ABSTRACT

Afterglow materials-based biological imaging has promising application prospects, due to negligible background. However, currently available afterglow materials mainly include inorganic materials as well as some organic nanoparticles, which are difficult to translate to the clinic, resulting from non-negligible metabolic toxicity and even leakage risk of inorganic heavy metals. Although building small organic molecules could solve such obstacles, organic small molecules with afterglow ability are extremely scarce, especially with a sufficient renal metabolic capacity. To address these issues, herein, we designed water-soluble zwitterion Cy5-NF with renal metabolic capacity and afterglow luminescence, which relied on an intramolecular cascade reaction between superoxide anion (O2•-, instead of 1O2) and Cy5-NF to release afterglow luminescence. Of note, compared with different reference contrast agents, zwitterion Cy5-NF not only had excellent afterglow properties but also had a rapid renal metabolism rate (half-life period, t1/2, around 10 min) and good biocompatibility. Unlike prior afterglow nanosystems possessing a large size, for the first time, zwitterion Cy5-NF has achieved the construction of water-soluble renal metabolic afterglow contrast agents, which showed higher sensitivity and signal-to-background ratio in afterglow imaging than fluorescence imaging for the kidney. Moreover, zwitterion Cy5-NF had a longer kidney retention time in renal-failure mice (t1/2 more than 15 min). More importantly, zwitterion Cy5-NF can be metabolized very quickly even in severe renal-failure mice (t1/2 around 25-30 min), which greatly improved biosecurity. Therefore, we are optimistic that the O2•--mediated afterglow mechanism-based water-soluble zwitterion Cy5-NF is very promising for clinical application, especially rapid detection of kidney failure.


Subject(s)
Renal Insufficiency , Superoxides , Animals , Mice , Water , Contrast Media
14.
Lancet ; 400(10363): 1585-1596, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36341753

ABSTRACT

BACKGROUND: The optimum systolic blood pressure after endovascular thrombectomy for acute ischaemic stroke is uncertain. We aimed to compare the safety and efficacy of blood pressure lowering treatment according to more intensive versus less intensive treatment targets in patients with elevated blood pressure after reperfusion with endovascular treatment. METHODS: We conducted an open-label, blinded-endpoint, randomised controlled trial at 44 tertiary-level hospitals in China. Eligible patients (aged ≥18 years) had persistently elevated systolic blood pressure (≥140 mm Hg for >10 min) following successful reperfusion with endovascular thrombectomy for acute ischaemic stroke from any intracranial large-vessel occlusion. Patients were randomly assigned (1:1, by a central, web-based program with a minimisation algorithm) to more intensive treatment (systolic blood pressure target <120 mm Hg) or less intensive treatment (target 140-180 mm Hg) to be achieved within 1 h and sustained for 72 h. The primary efficacy outcome was functional recovery, assessed according to the distribution in scores on the modified Rankin scale (range 0 [no symptoms] to 6 [death]) at 90 days. Analyses were done according to the modified intention-to-treat principle. Efficacy analyses were performed with proportional odds logistic regression with adjustment for treatment allocation as a fixed effect, site as a random effect, and baseline prognostic factors, and included all randomly assigned patients who provided consent and had available data for the primary outcome. The safety analysis included all randomly assigned patients. The treatment effects were expressed as odds ratios (ORs). This trial is registered at ClinicalTrials.gov, NCT04140110, and the Chinese Clinical Trial Registry, 1900027785; recruitment has stopped at all participating centres. FINDINGS: Between July 20, 2020, and March 7, 2022, 821 patients were randomly assigned. The trial was stopped after review of the outcome data on June 22, 2022, due to persistent efficacy and safety concerns. 407 participants were assigned to the more intensive treatment group and 409 to the less intensive treatment group, of whom 404 patients in the more intensive treatment group and 406 patients in the less intensive treatment group had primary outcome data available. The likelihood of poor functional outcome was greater in the more intensive treatment group than the less intensive treatment group (common OR 1·37 [95% CI 1·07-1·76]). Compared with the less intensive treatment group, the more intensive treatment group had more early neurological deterioration (common OR 1·53 [95% 1·18-1·97]) and major disability at 90 days (OR 2·07 [95% CI 1·47-2·93]) but there were no significant differences in symptomatic intracerebral haemorrhage. There were no significant differences in serious adverse events or mortality between groups. INTERPRETATION: Intensive control of systolic blood pressure to lower than 120 mm Hg should be avoided to prevent compromising the functional recovery of patients who have received endovascular thrombectomy for acute ischaemic stroke due to intracranial large-vessel occlusion. FUNDING: The Shanghai Hospital Development Center; National Health and Medical Research Council of Australia; Medical Research Futures Fund of Australia; China Stroke Prevention; Shanghai Changhai Hospital, Science and Technology Commission of Shanghai Municipality; Takeda China; Hasten Biopharmaceutic; Genesis Medtech; Penumbra.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Adolescent , Adult , Brain Ischemia/drug therapy , Stroke/therapy , Blood Pressure/physiology , Treatment Outcome , China/epidemiology , Thrombectomy/adverse effects , Ischemic Stroke/drug therapy , Ischemic Stroke/surgery
15.
Anal Chem ; 95(2): 1566-1573, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36584357

ABSTRACT

Effective monitoring of the physiological progression of acute lung injury (ALI) in real time is crucial for early theranostics to reduce its high mortality. In particular, activatable fluorescence and photoacoustic molecule probes have attracted attention to assess ALI by detecting related indicators. However, the existing fluorophores often encounter issues of low retention in the lungs and slow clearance from the body, which compromise the probe's actual capability for in situ imaging by intravenous injection in vivo. Herein, a novel near-infrared hemicyanines fluorophore (FJH) bearing a quaternary ammonium group was first developed by combining with the rational design and screening strategy. The properties of good hydrophilicity and blood circulation effectively enable FJH accumulation for lung imaging. Inspired by the high retention efficiency, the probe FJH-C that turns on fluorescence and photoacoustic signals in response to the ALI indicator (esterase) was subsequently synthesized. Notably, the probe FJH-C successfully achieved the selectivity and sensitivity toward esterase in vitro and in living cells. More importantly, FJH-C can be further used to assess lipopolysaccharides and silica-induced ALI through the desired fluo-photoacoustic signal. Therefore, this study not only shows the first activatable probe for real-time imaging of lung function but also highlights the fluorophore structure with high lung retention. It is believed that FJH and FJH-C can serve as an efficient platform to reveal the pathological progression of other lung diseases for early diagnosis and medical intervention.


Subject(s)
Acute Lung Injury , Fluorescent Dyes , Humans , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , Diagnostic Imaging , Spectrum Analysis , Molecular Probes , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Optical Imaging
16.
Anal Chem ; 95(39): 14754-14761, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37734030

ABSTRACT

Acute kidney injury (AKI) is a common medical condition with high morbidity and mortality. Although urinalysis provides a noninvasive and convenient diagnostic method for AKI at the molecular level, the low sensitivity of current chemical probes used in urinalysis hinders the time diagnosis of AKI. Herein, we achieved the sensitive and early diagnosis of AKI by the development of a chemiluminescent probe CL-Pa suitable for detection of urinary Vanin-1. Vanin-1 is considered as an early and sensitive biomarker for AKI, while few chemical probes have been applied to for its efficient detection. By virtue of the low autofluorescence interference during urine imaging in the chemiluminescence model, CL-Pa could realize the monitoring of the up-regulated urinary Vanin-1 with a high signal-to-noise ratio (∼588). Importantly, under the help of CL-Pa, the up-regulation of urinary Vanin-1 of cisplatin-induced AKI mice at 12 h post cisplatin injection was detected, which was much earlier than clinical biomarkers (sCr and BUN) and change of kidney histology (48 h post cisplatin injection). Furthermore, using this probe, the fluctuation of urinary Vanin-1 of mice with different degrees of AKI was monitored. This study demonstrated the ability of CL-Pa in sensitively detecting drug-induced AKI through urinalysis and suggested the great potential of CL-Pa for early diagnosis of AKI and evaluate the efficiency of anti-AKI drugs clinically.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Animals , Signal-To-Noise Ratio , Cisplatin/adverse effects , Acute Kidney Injury/diagnosis , Acute Kidney Injury/diagnostic imaging , Urinalysis , Biomarkers , Early Diagnosis
17.
Anal Chem ; 95(17): 6863-6870, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37074120

ABSTRACT

Effective monitoring of essential bioindicators with high-contrast fluorescence imaging is highly crucial to reveal the pathological progression of diseases. However, most reported probes based on asymmetric amino-rhodamine (ARh) derivatives are often limited in practical application due to the low signal-to-noise ratios. Herein, a new fluorophore, 3-methoxy-amino-rhodamine (3-MeOARh), with improved fluorescence quantum yield (0.51 in EtOH) is designed and synthesized by introducing methoxy group in the ortho-position of amino in asymmetric amino-rhodamine. Notably, the good properties of the ortho-compensation effect further effectively enable the construction of an activatable probe with a high signal-to-noise ratio. As a proof of concept, the probe (3-MeOARh-NTR) was successfully synthesized for nitroreductase detection with high selectivity, excellent sensitivity, and good stability. More importantly, the relationship between drug-induced kidney hypoxia and elevated nitroreductase concentration was first uncovered in living tissues through high-contrast imaging. Therefore, the study presents the activatable probe for kidney hypoxia imaging while highlighting the 3-MeOARh structure with a satisfactory signal-to-noise ratio. It is believed that 3-MeOARh can serve as an efficient platform for activatable probe construction to reveal the pathological progression of different diseases.


Subject(s)
Acute Kidney Injury , Fluorescent Dyes , Humans , Rhodamines , Fluorescent Dyes/chemistry , Optical Imaging/methods , Nitroreductases , Hypoxia
18.
Small ; 19(31): e2205558, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36650986

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) using the Zn metal anode have been considered as one of the next-generation commercial batteries with high security, robust capacity, and low price. However, parasitic reactions, notorious dendrites and limited lifespan still hamper their practical applications. Herein, an eco-friendly nitrogen-doped and sulfonated carbon dots (NSCDs) is designed as a multifunctional additive for the cheap aqueous ZnSO4 electrolyte, which can overcome the above difficulties effectively. The abundant polar groups (-COOH, -OH, -NH2 , and -SO3 H) on the CDs surfaces can regulate the solvation structure of Zn2+ through decreasing the coordinated active H2 O molecules, and thus redistribute Zn2+ deposition to avoid side reactions. Some of the negatively charged NSCDs are adsorbed on Zn anode surface to isolate the H2 O/SO4 2- corrosion through the electrostatic shielding effect. The synergistic effect of the doped nitrogen species and the surface sulfonic groups can induce a uniform electrolyte flux and a homogeneous Zn plating with a (002) texture. As a result, the excellent cycle life (4000 h) and Coulombic efficiency (99.5%) of the optimized ZIBs are realized in typical ZnSO4 electrolytes with only 0.1 mg mL-1 of NSCDs additive.

19.
Eur Radiol ; 33(5): 3444-3454, 2023 May.
Article in English | MEDLINE | ID: mdl-36920519

ABSTRACT

OBJECTIVES: To determine if three-dimensional (3D) radiomic features of contrast-enhanced CT (CECT) images improve prediction of rapid abdominal aortic aneurysm (AAA) growth. METHODS: This longitudinal cohort study retrospectively analyzed 195 consecutive patients (mean age, 72.4 years ± 9.1) with a baseline CECT and a subsequent CT or MR at least 6 months later. 3D radiomic features were measured for 3 regions of the AAA, viz. the vessel lumen only; the intraluminal thrombus (ILT) and aortic wall only; and the entire AAA sac (lumen, ILT, and wall). Multiple machine learning (ML) models to predict rapid growth, defined as the upper tercile of observed growth (> 0.25 cm/year), were developed using data from 60% of the patients. Diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) in the remaining 40% of patients. RESULTS: The median AAA maximum diameter was 3.9 cm (interquartile range [IQR], 3.3-4.4 cm) at baseline and 4.4 cm (IQR, 3.7-5.4 cm) at the mean follow-up time of 3.2 ± 2.4 years (range, 0.5-9 years). A logistic regression model using 7 radiomic features of the ILT and wall had the highest AUC (0.83; 95% confidence interval [CI], 0.73-0.88) in the development cohort. In the independent test cohort, this model had a statistically significantly higher AUC than a model including maximum diameter, AAA volume, and relevant clinical factors (AUC = 0.78, 95% CI, 0.67-0.87 vs AUC = 0.69, 95% CI, 0.57-0.79; p = 0.04). CONCLUSION: A radiomics-based method focused on the ILT and wall improved prediction of rapid AAA growth from CECT imaging. KEY POINTS: • Radiomic analysis of 195 abdominal CECT revealed that an ML-based model that included textural features of intraluminal thrombus (if present) and aortic wall improved prediction of rapid AAA progression compared to maximum diameter. • Predictive accuracy was higher when radiomic features were obtained from the thrombus and wall as opposed to the entire AAA sac (including lumen), or the lumen alone. • Logistic regression of selected radiomic features yielded similar accuracy to predict rapid AAA progression as random forests or support vector machines.


Subject(s)
Aortic Aneurysm, Abdominal , Thrombosis , Humans , Aged , Retrospective Studies , Longitudinal Studies , Aortic Aneurysm, Abdominal/diagnostic imaging , Aorta, Abdominal , Tomography, X-Ray Computed
20.
Anal Bioanal Chem ; 415(18): 4185-4196, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36707448

ABSTRACT

Fluorescence imaging has been widely employed for biomedical research and clinical diagnostics. With ease of synthesis and excellent photophysical properties, D-A type fluorophores are widely designed for fluorescence imaging. However, traditional D-A type fluorophores are solvatochromic which reduces the fluorescence brightness in the biological system. To solve this problem and build on our previous work, we devised a novel HIEE fluorophore MTC with typical anti-solvatochromic fluorescence. Furthermore, the activated fluorescent probe designed based on MTC showed excellent imaging performance. We believe that the strategy based on the fluorophores with typical anti-solvatohromic fluorescence can be a useful platform for designing fluorescent probes for high-brightness imaging in the biological system.


Subject(s)
Fluorescent Dyes , Optical Imaging , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL