Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 81(1): 61, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279053

ABSTRACT

Previous studies have demonstrated that α-synuclein (α-SYN) is closely associated with rapid eye movement sleep behavior disorder (RBD) related to several neurodegenerative disorders. However, the exact molecular mechanisms are still rarely investigated. In the present study, we found that in the α-SYNA53T induced RBD-like behavior mouse model, the melatonin level in the plasma and pineal gland were significantly decreased. To elucidate the underlying mechanism of α-SYN-induced melatonin reduction, we investigated the effect of α-SYN in melatonin biosynthesis. Our findings showed that α-SYN reduced the level and activity of melatonin synthesis enzyme acetylserotonin O-methyltransferase (ASMT) in the pineal gland and in the cell cultures. In addition, we found that microtubule-associated protein 1 light chain 3 beta (LC3B) as an important autophagy adapter is involved in the degradation of ASMT. Immunoprecipitation assays revealed that α-SYN increases the binding between LC3B and ASMT, leading to ASMT degradation and a consequent reduction in melatonin biosynthesis. Collectively, our results demonstrate the molecular mechanisms of α-SYN in melatonin biosynthesis, indicating that melatonin is an important molecule involved in the α-SYN-associated RBD-like behaviors, which may provide a potential therapeutic target for RBD of Parkinson's disease.


Subject(s)
Melatonin , Pineal Gland , Mice , Animals , Melatonin/metabolism , Acetylserotonin O-Methyltransferase/chemistry , Acetylserotonin O-Methyltransferase/metabolism , alpha-Synuclein/metabolism , Pineal Gland/metabolism
2.
Arch Virol ; 169(5): 96, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619633

ABSTRACT

In recent years, the pig industry in Xinjiang, China, has been severely impacted by outbreaks of porcine epidemic diarrhea (PED), despite vaccination efforts. In this study, we investigated the genetic characteristics of currently prevalent porcine epidemic diarrhea virus (PEDV) strains in the region. We collected 548 samples from animals with suspected PED on large-scale pig farms in Xinjiang. Of these, 258 tested positive for PEDV by RT-PCR, yielding an overall positivity rate of 47.08%. S1 gene sequencing and phylogenetic analysis were conducted on 23 randomly selected RT-PCR-positive samples. Three endemic strains of PEDV (PEDV/CH/XU/2020, PEDV/CH/XK/2020, and PEDV/CH/XA/2020) were isolated, and their complete genome sequences were analyzed for evidence of genetic recombination. Sequence comparison of the S gene indicated significant variations in the S1 gene of the Xinjiang strains compared to the vaccine strains CV777, AJ1102, and LWL, with 90.2%-98.5% nucleotide sequence identity. Notably, both the N-terminal and C-terminal domains of the S protein showed significant variation. Genetic evolutionary analysis identified the GIIa subtype as the dominant genotype among the epidemic strains in Xinjiang. Recombination analysis revealed inter-subtype recombination events in the PEDV/CH/XK/2020 and XJ1904-34 strains. These findings highlight the extensive genetic variation in the predominant GIIa genotype of PEDV in Xinjiang, which does not match the genotype of the currently used vaccine strains. These data may guide further efforts toward the development of effective vaccines for the control of PED.


Subject(s)
Dysentery , Porcine epidemic diarrhea virus , Vaccines , Animals , Swine , Phylogeny , Porcine epidemic diarrhea virus/genetics , Biological Evolution , China/epidemiology
3.
J Neuroinflammation ; 20(1): 274, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37990334

ABSTRACT

Nuclear receptor related-1 (Nurr1), a ligand-activated transcription factor, is considered a potential susceptibility gene for Parkinson's disease (PD), and has been demonstrated to possess protective effects against inflammation-induced neuronal damage. Despite the evidence showing decreased NURR1 level and increased pro-inflammatory cytokines in cell and animal models as well as in PD patients' peripheral blood mononuclear cells (PBMCs), the underlying mechanism remains elusive. In this study, we investigated the molecular mechanism of Nurr1 in PD-related inflammation. Through the miRNA-sequencing and verification in PBMCs from a cohort of 450 individuals, we identified a significant change of a Nurr1-dependent miRNA miR-30e-5p in PD patients compared to healthy controls (HC). Additionally, PD patients exhibited an elevated plasma interleukin-1ß (IL-1ß) level and increased nucleotide-binding domain-like receptor protein 3 (NLRP3) expression in PBMCs compared to HC. Statistical analyses revealed significant correlations among NURR1, miR-30e-5p, and NLRP3 levels in the PBMCs of PD patients. To further explore the involvement of Nurr1-miR-30e-5p-NLRP3 axis in the inflammation-mediated PD pathology, we developed a mouse model (Nurr1flox+/Cd11b-cre+, Nurr1cKO) conditionally knocking out Nurr1 in Cd11b-expressing cells. Our investigations in Nurr1cKO mice unveiled significant dopaminergic neurodegeneration following lipopolysaccharide-induced inflammation. Remarkably, Nurr1 deficiency triggered microglial activation and activated NLRP3 inflammasome, resulting in increased IL-1ß secretion. Coincidently, we found that miR-30e-5p level was significantly decreased in the PBMCs and primary microglia of Nurr1cKO mice compared to the controls. Furthermore, our in vitro experiments demonstrated that miR-30e-5p specifically targeted NLRP3. In Nurr1-knockdown microglia, NLRP3 expression was upregulated via miR-30e-5p. In summary, our findings highlight the involvement of Nurr1-miR-30e-5p-NLRP3 axis in the inflammation-mediated neurodegeneration in PD, the results of which may offer promising prospects for developing PD biomarkers and targeted therapeutic interventions.


Subject(s)
MicroRNAs , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/metabolism , Inflammasomes/metabolism , Receptors, Cytoplasmic and Nuclear
4.
Small ; 19(35): e2301144, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37186449

ABSTRACT

Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.

5.
Sensors (Basel) ; 23(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37430555

ABSTRACT

Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Humans , Animals , Biomedical Research
6.
Entropy (Basel) ; 25(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673307

ABSTRACT

The Magnetic Flux Leakage (MFL) visualization technique is widely used in the surface defect inspection of ferromagnetic materials. However, the information of the images detected through the MFL method is incomplete when the defect (especially for the cracks) is complex, and some information would be lost when magnetized unidirectionally. Then, the multidirectional magnetization method is proposed to fuse the images detected under different magnetization orientations. It causes a critical problem: the existing image registration methods cannot be applied to align the images because the images are different when detected under different magnetization orientations. This study presents a novel image registration method for MFL visualization to solve this problem. In order to evaluate the registration, and to fuse the information detected in different directions, the mutual information between the reference image and the MFL image calculated by the forward model is designed as a measure. Furthermore, Particle Swarm Optimization (PSO) is used to optimize the registration process. The comparative experimental results demonstrate that this method has a higher registration accuracy for the MFL images of complex cracks than the existing methods.

7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 579-584, 2023 May.
Article in Zh | MEDLINE | ID: mdl-37248587

ABSTRACT

Objective: To explore the potential interactions among obesity-related proteins in the pathogenic process of breast cancer (BC) in women. Methods: We conducted a case-control study, enrolling 279 primary breast cancer cases and 260 age-frequency-matched healthy women between April 2014 and May 2015. Based on the evidence of previous published literature on obesity-related proteins and BC risks, we selected proteins that received more attention and measured the plasma levels of these proteins by enzyme-linked immunosorbent assay (ELISA). After stratification of the subjects according to their menopausal status, an analytic strategy combining multivariate logistic regression and generalized multifactor dimensionality reduction (GMDR) was used to explore the effect of the possible interactions of these proteins on BC risk. Results: There were marginal high-order interactions among insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), C-reactive protein (CRP), resistin (RETN), soluble leptin receptor (sOB-R), and adiponectin (ADP) in premenopausal women (with the balanced accuracy for the testing set being 59.01%, cross-validation consistency being 10/10, and permutation test P=0.05). There were high-order interactions among leptin (LEP), sOB-R, ADP, CRP, IGFBP3 and visfatin (VF) in postmenopausal women (with the balanced accuracy for the testing set being 67.31%, cross-validation consistency being 10/10, and permutation test P=0.01). Along with an increase in the number of obesity-related proteins to which the subjects were exposed, the risk of developing breast cancer gradually increased in both pre- and postmenopausal women ( OR pre =2.18, 95% CI: 1.69-2.82; OR post =2.41, 95% CI: 1.75-3.32). Conclusions: This preliminary study suggested high-order interactions among obesity-related proteins on BC risk in both pre- and postmenopausal women. In future studies, close attention should be given to these potential interactions when these proteins are used jointly as predictors, as well as in developing a comprehensive risk scoring system for BC.


Subject(s)
Breast Neoplasms , Leptin , Female , Humans , Breast Neoplasms/pathology , Case-Control Studies , Postmenopause , Risk Factors , Insulin-Like Growth Factor I/analysis , C-Reactive Protein/analysis , Obesity/complications
8.
Acta Pharmacol Sin ; 43(3): 624-633, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34163023

ABSTRACT

Vascular calcification (VC) is characterized by pathological depositions of calcium and phosphate in the arteries and veins via an active cell-regulated process, in which vascular smooth muscle cells (VSMCs) transform into osteoblast/chondrocyte-like cells as in bone formation. VC is associated with significant morbidity and mortality in chronic kidney disease (CKD) and cardiovascular disease, but the underlying mechanisms remain unclear. In this study we investigated the role of large-conductance calcium-activated potassium (BK) channels in 3 experimental VC models. VC was induced in vascular smooth muscle cells (VSMCs) by ß-glycerophosphate (ß-GP), or in rats by subtotal nephrectomy, or in mice by high-dosage vitamin D3. We showed that the expression of BK channels in the artery of CKD rats with VC and in ß-GP-treated VSMCs was significantly decreased, which was functionally confirmed by patch-clamp recording. In ß-GP-treated VSMCs, BK channel opener NS1619 (20 µM) significantly alleviated VC by decreasing calcium content and alkaline phosphatase activity. Furthermore, NS1619 decreased mRNA expression of ostoegenic genes OCN and OPN, as well as Runx2 (a key transcription factor involved in preosteoblast to osteoblast differentiation), and increased the expression of α-SMA protein, whereas BK channel inhibitor paxilline (10 µM) caused the opposite effects. In primary cultured VSMCs from BK-/- mice, BK deficiency aggravated calcification as did BK channel inhibitor in normal VSMCs. Moreover, calcification was more severe in thoracic aorta rings of BK-/- mice than in those of wild-type littermates. Administration of BK channel activator BMS191011 (10 mg· kg-1 ·d-1) in high-dosage vitamin D3-treated mice significantly ameliorated calcification. Finally, co-treatment with Akt inhibitor MK2206 (1 µM) or FoxO1 inhibitor AS1842856 (3 µM) in calcified VSMCs abrogated the effects of BK channel opener NS1619. Taken together, activation of BK channels ameliorates VC via Akt/FoxO1 signaling pathways. Strategies to activate BK channels and/or enhance BK channel expression may offer therapeutic avenues to control VC.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/drug effects , Muscle, Smooth, Vascular/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Vascular Calcification/pathology , Alkaline Phosphatase/drug effects , Animals , Aorta, Thoracic/drug effects , Benzimidazoles/pharmacology , Cholecalciferol/pharmacology , Disease Models, Animal , Glycerophosphates/pharmacology , Male , Mice , Mice, Inbred C57BL , Nephrectomy , Osteocalcin/drug effects , Osteopontin/drug effects , Peptide Fragments/drug effects , RNA, Messenger/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley
9.
Phytother Res ; 36(2): 857-872, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026867

ABSTRACT

Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.


Subject(s)
Hypertension , Panax , Humans , Hypertension/drug therapy , Signal Transduction
10.
J Am Pharm Assoc (2003) ; 62(2): 481-486, 2022.
Article in English | MEDLINE | ID: mdl-34776338

ABSTRACT

BACKGROUND: There is a lack of research on the nature of drug-related problems (DRPs) in older adult communities in China and the impact of home medication review on DRP reduction and health-related quality-of-life (HRQoL) improvement. OBJECTIVES: To identify and categorize DRPs in older adults in China and to assess the impact of home medication review. METHODS: The prospective study was conducted in 2 community health service centers in Shanghai, China from December 2018 to December 2019. Eligible patients received a home medication review by a clinical pharmacist to assess for DRPs and adherence, propose pharmaceutical interventions, and measure outcomes of HRQoL. All enrolled patients were followed up for 3 months. RESULTS: Medication use in 412 patients was analyzed. A total of 362 DRPs were identified, an average of 0.88 per patient. Treatment effectiveness was the primary DRP type (249; 68.8%). The most common causes of DRPs were patient-related (35.1%) and drug selection (31.0%). Pharmacists made 733 interventions, an average of 2 per DRP. A total of 82.1% of these interventions were accepted. At a 3-month follow-up, home medication review led to a statistically significant reduction in the mean number of DRPs (0.4 vs. 0.88, P < 0.001) and an increase in medication adherence (1.42 vs. 0.85, P < 0.001). Both HRQoL indicators also improved, EuroQol 5 Dimension scale (0.75 vs. 0.78, P < 0.001) and EuroQol-visual analog scale (70 vs. 77.65, P < 0.001). CONCLUSION: Home medication review is a practical means to optimize drug therapy and improve patients' HRQoL in community settings.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Quality of Life , Aged , China , Humans , Independent Living , Medication Review , Pharmacists , Prospective Studies
11.
Phytochem Anal ; 33(2): 239-248, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34390060

ABSTRACT

INTRODUCTION: The roots of Stephania succifera are used in traditional medicine for the treatment of several diseases. Research on this plant has mainly focused on bioactive alkaloids from the roots, and no previous work on compounds from the abundant leaves has yet been reported. OBJECTIVE: To identify and compare alkaloidal compounds in S. succifera roots and leaves and to predict the potential bioactivity of some alkaloids. METHODS: High-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS) was employed to identify alkaloidal compounds from S. succifera. The potential targets and bioactivities of most alkaloids were predicted using the PharmMapper server. RESULTS: Fifty-six alkaloidal compounds, including protoberberine-, aporphine-, proaporphine-, benzylisoquinoline-, and lactam-type alkaloids, were identified or tentatively identified in S. succifera roots and leaves based on the HPLC-MS data. Forty-one compounds have not been previously reported in S. succifera and eight of them have not been previously reported in the literature. Twenty-four alkaloidal compounds were found in both roots and leaves. Twelve potential targets with different indications were predicted for some alkaloids. CONCLUSION: Comparison of chemical constituents and their potential bioactivities for S. succifera roots and leaves indicated that diverse bioactive alkaloids were present in the leaves as well as the roots. PharmMapper provided new directions for bioactivity screening. This study will be helpful for further understanding the medicinal components of S. succifera and the rational utilisation of plant resources.


Subject(s)
Alkaloids , Stephania , Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Leaves/chemistry , Stephania/chemistry , Tandem Mass Spectrometry/methods
12.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055043

ABSTRACT

The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson's disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons' fate and development in the midbrain could lead to a better strategy for PD cell therapy.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Transcription Factors/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Movement , Cell- and Tissue-Based Therapy/methods , Cellular Reprogramming/genetics , Gene Expression Regulation , Genetic Engineering , Genetic Therapy , Humans , Signal Transduction , Transcription Factors/genetics , Transgenes
13.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012533

ABSTRACT

The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.


Subject(s)
Gene Expression Regulation, Plant , Transcription Factors , Genes, myb , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Langmuir ; 37(22): 6632-6640, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34042453

ABSTRACT

Acid-responsive nonaqueous (glycerol in n-decane) Pickering emulsions were prepared using preferentially oil-wetted dynamic covalent silica (SiO2-pDB) nanoparticles as the Pickering emulsifiers. The acid-responsive Pickering emulsifier SiO2-pDB was prepared based on a Schiff base reaction between amino silica (SiO2-NH2) and p-decanoxybenzaldehyde (pDBA). The formation of SiO2-pDB was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. The preferentially oil-wetted character of SiO2-pDB was indicated by contact angle measurement. Stable nonaqueous Pickering emulsions were prepared using preferentially oil-wetted SiO2-pDB as the Pickering emulsifier. However, after adjusting the nonaqueous Pickering emulsions to an acidic environment, complete phase separation occurred. In the acidic environment, preferentially oil-wetted SiO2-pDB decomposed into hydrophilic SiO2-NH2 and hydrophobic pDBA due to the decomposition of the dynamic imine bond in the SiO2-pDB. Then, the hydrophilic SiO2-NH2 and hydrophobic pDBA desorbed from the two-phase interface, resulting in complete phase separation of the initially stable nonaqueous Pickering emulsions. The acid-responsive nonaqueous Pickering emulsions show great potential in application in water sensitive systems, such as oil-based drilling fluids.

15.
Epidemiol Infect ; 149: e219, 2021 10 05.
Article in English | MEDLINE | ID: mdl-35686655

ABSTRACT

As the corona virus disease 2019 (COVID-19) pandemic continues around the world, understanding the transmission characteristics of COVID-19 is vital for prevention and control. We conducted the first study aiming to estimate and compare the relative risk of secondary attack rates (SARs) of COVID-19 in different contact environments. Until 26 July 2021, epidemiological studies and cluster epidemic reports of COVID-19 were retrieved from SCI, Embase, PubMed, CNKI, Wanfang and CBM in English and Chinese, respectively. Relative risks (RRs) were estimated in pairwise comparisons of SARs between different contact environments using the frequentist NMA framework, and the ranking of risks in these environments was calculated using the surface under the cumulative ranking curve (SUCRA). Subgroup analysis was performed by regions. Thirty-two studies with 68 260 participants were identified. Compared with meal or gathering, transportation (RR 10.55, 95% confidence interval (CI) 1.43-77.85), medical care (RR 11.68, 95% CI 1.58-86.61) and work or study places (RR 10.15, 95% CI 1.40-73.38) had lower risk ratios for SARs. Overall, the SUCRA rankings from the highest to the lowest were household (95.3%), meal or gathering (81.4%), public places (58.9%), daily conversation (50.1%), transportation (30.8%), medical care (18.2%) and work or study places (15.3%). Household SARs were significantly higher than other environments in the subgroup of mainland China and sensitive analysis without small sample studies (<100). In light of the risks, stratified personal protection and public health measures need to be in place accordingly, so as close contacts categorising and management.


Subject(s)
COVID-19 , COVID-19/epidemiology , Family Characteristics , Humans , Incidence , Network Meta-Analysis , Pandemics
16.
Acta Virol ; 65(3): 273-278, 2021.
Article in English | MEDLINE | ID: mdl-34565155

ABSTRACT

African swine fever (ASF) is an acute and severe infectious disease that seriously endangers the global porcine industry. In order to develop ASF serodiagnostic reagents with high specificity and sensitivity, in the present study, the antigenic epitopes of P72 protein of African swine fever virus (ASFV) were analyzed, and the ASFV multi-epitope fusion gene MeP72 in tandem with the dominant linear epitopes was constructed. The recombinant multi-epitope fusion MeP72 (reMeP72) was prepared in Escherichia coli. A colloidal gold-based immunochromatographic assay (CGIA) based on reMeP72 was developed for the detection of antibodies against ASFV. A total of 139 pig clinical serum samples were used for assessment of the potential diagnostic value of reMeP72. The results showed that CGIA did not cross-react with positive sera of viruses, such as classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SIV), showing high specificity. Sensitivity analysis showed that CGIA could detect ASFV-positive serum at a dilution of 1:64. Compared with commercial ASFV kits, the sensitivity and specificity of ASFV CGIA based on reMeP72 protein were 85.7% and 97.6%, respectively. The agreement rate of the two methods was 96.4%, showing a good detection performance. The results indicated that the reMeP72 was of potential value for the serodiagnosis of ASF. Keywords: African swine fever virus; P72 gene; antigenic protein; colloidal gold-based immunochromatographic assay.


Subject(s)
African Swine Fever Virus , African Swine Fever , Porcine respiratory and reproductive syndrome virus , African Swine Fever/diagnosis , African Swine Fever Virus/genetics , Animals , Epitopes , Serologic Tests , Swine
17.
Behav Cogn Psychother ; 49(1): 112-117, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32843123

ABSTRACT

BACKGROUND: Behavioural activation (BA) is an evidence-based treatment for depression that has been primarily delivered in individual out-patient treatment. Prior research supports a positive participant experience in individual therapy; however, less is known about the patient experience in group therapy, which is common in acute psychiatric settings. AIMS: The present study examined the patient experience of Brief Behavioral Activation Treatment for Depression (BATD) delivered in group acute psychiatric treatment. METHOD: We used thematic analysis to extract themes from feedback surveys administered as part of quality improvement practice at a partial hospital program. Survey questions explored what patients learned, liked, disliked and thought could be improved in the BATD groups. Three individuals independently coded survey responses and collaboratively developed categories and themes. RESULTS: Themes included several helpful content areas (e.g. value-driven activities, increasing motivation, goal setting, activity scheduling, cognitive behavioural model, self-monitoring) and learning methods (e.g. group format, experiential exercises, worksheets). Patients also identified unhelpful content (e.g. specific focus on depression and listing activities by mood). There was mixed feedback regarding the repetition of material and balance of lecture versus group participation. CONCLUSION: Overall, these findings suggest a mostly positive patient experience of group-delivered BATD and support the acceptability of group-delivered BATD as a component of short-term intensive treatment.


Subject(s)
Cognitive Behavioral Therapy , Behavior Therapy , Hospitals , Humans , Patient Outcome Assessment , Psychotherapy
18.
J Craniofac Surg ; 31(1): 79-84, 2020.
Article in English | MEDLINE | ID: mdl-31725500

ABSTRACT

BACKGROUND: Because the traditional technique is known to cause visible scarring, it is challenging to yield optimal outcomes while treating a severe type of microform and minor-form cleft lip. The authors present a new refined technique with minimal skin incision and philtrum formation through an intraoral incision. METHODS: The surgical technique involves single Z-plasty or double or triple unilimb Z-plasty to restore an elevated cupid's bow peak and overlapping of an orbicularis oris muscle flap to create the philtrum through an intraoral incision. Cleft lip nasal deformity was corrected with reverse-U incision and V-Y plasty. RESULTS: Eighteen patients were operated between September 2008 and June 2017. Patient age at the time of surgery ranged from 3 to 12 months. The duration of follow-up ranged from 12 months to 7 years (mean, 36 months). The elevated cupid's bow was corrected by performing single Z-plasty in 6 patients, double unilimb Z-plasty in 7 patients, and triple unilimb Z-plasty in 5 patients. In all cases, the notch or elevated cupid's bow was corrected, the surgical scar was minimal, and philtrum reconstruction was satisfactory. Minor scar revision was performed in 4 patients. Cleft lip nasal deformity was corrected in fifteen patients. CONCLUSIONS: The technique adopted here causes minimal scarring, facilitates the formation of an anatomical philtrum, preserves the continuity and function of the muscle, and presents sufficient elevation of the philtral column.


Subject(s)
Cleft Lip/surgery , Microfilming , Cicatrix , Dermatologic Surgical Procedures , Female , Humans , Infant , Lip/surgery , Male , Plastic Surgery Procedures , Reoperation , Surgical Flaps/surgery , Time Factors , Treatment Outcome
19.
J Org Chem ; 84(9): 5213-5221, 2019 May 03.
Article in English | MEDLINE | ID: mdl-30892037

ABSTRACT

A copper(I)-catalyzed sulfur-bridged dimerization of imidazopyridines has been developed using isothiocyanate as the sulfur source. This method enables a switchable synthesis of bis(imidazo[1,2- a]pyridin-3-yl)sulfanes or bis(2-(imidazo[1,2- a]pyridin-2-yl)phenyl)sulfanes in the presence of 4-dimethylaminopyridine (DMAP) or K2CO3 when different imidazopyridines were employed. Under optimized conditions, a variety of sulfur-bridged imidazopyridines were obtained in good yields. Moreover, thiourea was proved to be the key intermediate under catalytic system A.

20.
Appl Opt ; 58(27): 7523-7530, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31674404

ABSTRACT

The fringe orientation is an important feature of the electronic speckle interferometry (ESPI) fringe pattern. Accurate and efficient calculation of the fringe orientation is very important for subsequent electronic speckle processing such as skeleton extraction and image filtering. To accurately and efficiently estimate fringe orientation, we propose an effective method based on a convolutional neural network. In the proposed method, the network needs clean-noisy image pairs to train and noisy images with theoretical value to test. The aligned noise-free ESPI fringe pattern orientation fields are fairly good estimations for the corresponding noise ones. After the model training is done, the other multiple ESPI fringe patterns are fed to the trained network simultaneously; the corresponding orientation results can be obtained accurately and efficiently. The advantage of using this method to extract the orientation is that the fringe orientation information can be extracted accurately and efficiently without complicated parameter adjustment. We evaluate the performance of our method via applying our method to the computer-simulated and experimentally acquired ESPI fringe patterns and comparing the results with those of three extensively used methods.

SELECTION OF CITATIONS
SEARCH DETAIL